Revenue optimization and customer targeting in daily-deals sites

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Berthier Ribeiro de Araujo Neto
Leandro Balby Marinho
Ricardo Baeza-yates
Wagner Meira Junior

Resumo

Daily-deals sites (DDSs), such as Groupon and Peixe Urbano, attract millions of customers in the hunt for offers at significantly reduced prices. The challenge of DDSs is to find the best match between deals and customers while generating as much revenue as possible. One important objective of a DDS is to improve the aggregated value customers give to emails, which should not be seen as spam. This thesis solves three different problems in order to guarantee revenue maximization and customer satisfaction. First, a method for predicting the number of coupons a deal is going to sell is proposed. Second, we present an email prioritization approach. Third, we introduce a new strategy for deals recommendation via email. All three methods improved the results of state-of-the-art algorithms for the tasks being addressed, with gains in precision varying from 7% to 21%, while reducing the number of emails sent in 40% without affecting the number of customers clicking the deals in emails.

Abstract

Daily-deals sites (DDSs), such as Groupon and Peixe Urbano, attract millions of customers in the hunt for offers at significantly reduced prices. The challenge of DDSs is to find the best match between deals and customers while generating as much revenue as possible. One important objective of a DDS is to improve the aggregated value customers give to emails, which should not be seen as spam. This thesis solves three different problems in order to guarantee revenue maximization and customer satisfaction. First, a method for predicting the number of coupons a deal is going to sell is proposed. Second, we present an email prioritization approach. Third, we introduce a new strategy for deals recommendation via email. All three methods improved the results of state-of-the-art algorithms for the tasks being addressed, with gains in precision varying from 7% to 21%, while reducing the number of emails sent in 40% without affecting the number of customers clicking the deals in emails.

Assunto

Sistema de recomendação, Computação, Sistemas de recuperação de informação

Palavras-chave

Recommender Systems, Daily-deals sites

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por