Phase synchronization analysis of bridge oscillators between clustered networks

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Recent works aim to establish necessary and sufficient conditions to guarantee phase synchronization between clusters of oscillators, usually assuming knowledge of the intra-cluster connections, that is, connections among oscillators of the same cluster. In this context, this paper takes a different approach in studying the stability of the synchronous manifold between clusters. By focusing on the inter-cluster relations between the bridge oscillators, a simplified problem is considered where intra-cluster effects are described as perturbations. Based on Lyapunov’s direct method, a framework is put forward to derive sufficient conditions for the ultimately boundedness of the phase difference between the bridge oscillators. This analysis does not rely on full information on the adjacency matrix describing the specific connections among oscillators within each cluster, an information that is not always available. The established theoretical conditions are compared to numerical simulations in two examples: (i) two interconnected clusters of Kuramoto oscillators, and (ii) a benchmark model of a power grid. Results indicate that the method is effective and that its conservativeness depends on the available network information. This framework can be generalized to different networks and oscillators.

Abstract

Assunto

Eletrônica de potência

Palavras-chave

Phase synchronization, Stability analysis, Kuramoto oscillators, Clustered networks, Perturbed systems

Citação

Curso

Endereço externo

https://link.springer.com/article/10.1007/s11071-019-05135-x

Avaliação

Revisão

Suplementado Por

Referenciado Por