Trend modelling with artificial neural networks. Case study: operating zones identification for higher SO3 incorporation in cement clinker

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Instantaneous measurements of process variables are usually not representative of the process effects as a whole when defining the condition of an output sample mainly in case of laboratory analysis. Moreover, process data have considerable dispersion. This leads to uncertainty in input–output time alignment and in variable relationship. This work employs a trend data-based approach to overcome the negative effects of these uncertainties in both tasks variable selection commonly supported by correlation analysis and model identification. Two real case studies using a clinker rotary kiln from a cement plant and a chemical recovery boiler from a pulp mill were used for illustration purposes. More reliable data-driven system representation enhances the comprehension of the underlying system phenomena supporting a more rational basis for decision making.

Abstract

Assunto

Redes neurais (Computação), Engenharia elétrica, Cimento - Indústria

Palavras-chave

Indústria de cimento, Redes Neurais Artificiais, Trend modelling, ANN, Instantaneous measurements, Process data dispersion, Time alignment, Variable relationship

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S0952197616300860

Avaliação

Revisão

Suplementado Por

Referenciado Por