Apparent softening of wet graphene membranes on a microfluidic platform

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

Abstract

Assunto

Grafeno, Propriedades mecânicas

Palavras-chave

Graphene, Mechanical properties, Liquid interface

Citação

Curso

Endereço externo

https://pubs.acs.org/doi/10.1021/acsnano.7b08841

Avaliação

Revisão

Suplementado Por

Referenciado Por