Sistema de recomendação de heróis para jogos MOBA utilizando aprendizado de máquina
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Recommendation system of heroes for MOBA games using machine learning
Primeiro orientador
Membros da banca
Luiz Chaimowicz
Renato Antônio Celso Ferreira
Rodrygo Luis Teodoro Santos
Renato Antônio Celso Ferreira
Rodrygo Luis Teodoro Santos
Resumo
Jogos Multiplayer Online Battle Arena (MOBA) são atualmente um dos mais populares gêneros de jogos online. Na sua jogabilidade básica, dois times de múltiplos jogadores competem entre si a fim de destruir a base inimiga, controlando uma unidade poderosa denominada “herói”. Cada herói tem diferentes habilidades, papéis e forças. Consequentemente, escolher uma boa combinação de heróis é fundamental para o sucesso de um determinado time em uma partida. Neste trabalho, é proposto um sistema de recomendação para seleção de heróis em uma partida de jogo MOBA. Foi desenvolvido um mecanismo baseado em regras de associação que sugere os heróis mais adequados para se compor um time, usando dados coletados de uma grande quantidade de partidas de Dota 2. Para avaliar a eficácia do line-up, foi treinada uma rede neural capaz de prever o time vencedor com uma acurácia de até 90,89%. Os resultados do sistema de recomendação foram muitos satisfatórios com até 76,4% de taxa de sucesso.
Abstract
MOBA games are currently one of the most popular online game genres. In their basic gameplay, two teams of multiple players compete against each other to destroy the enemy’s base, controlling a powerful unit known as “hero”. Each hero has different abilities, roles and strengths. Thus, choosing a good combination of heroes is fundamental for the success in the game. In this dissertation we propose a recommendation system for selecting heroes in a MOBA game. We develop a mechanism based on association rules that suggests the most suitable heroes for composing a team, using data collected from a large number of Dota 2 matches. For evaluating the efficacy of the line-up, we trained a neural network capable of predicting the winner team with a 90.89% accuracy. The results of the recommendation system were very satisfactory with up to 76.4% success rate.
Assunto
Computação – Teses, Aprendizado do computador – Teses, Sistemas de recomendação – Teses, Jogos eletrônicos – Teses
Palavras-chave
Aprendizado de Máquina, Sistemas de Recomendação, Jogos Digitais, E-sports, MOBA, Dota 2
Citação
Departamento
Endereço externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
