Sobre as regularidades das wavelets de Daubechies

dc.creatorIsadora Maria Miranda Guedes
dc.date.accessioned2019-08-12T09:27:48Z
dc.date.accessioned2025-09-09T01:13:53Z
dc.date.available2019-08-12T09:27:48Z
dc.date.issued2019-02-22
dc.description.abstractx
dc.identifier.urihttps://hdl.handle.net/1843/EABA-BAPHCS
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.subject.otherwavelets
dc.titleSobre as regularidades das wavelets de Daubechies
dc.typeDissertação de mestrado
local.contributor.advisor1Paulo Cupertino de Lima
local.contributor.referee1Gustavo Barbagallo de Oliveira
local.contributor.referee1Silas Luiz de Carvalho
local.description.resumoClassicamente, uma wavelet é uma função $\psi\in L^2(\mathbb{R})$, tal que o conjunto de funções $\{\psi_{j,k}(x): \; j,k \in \mathbb{Z}\}$, onde $\psi_{j,k}(x)=2^{-j/2}\psi(2^{-j}x-k)$, forma uma base ortonormal para o espaço $L^2(\mathbb{R})$. Uma classe de wavelets particularmente importante são as wavelets de Daubechies, $_N\psi,$ as quais constituem uma família de wavelets a um parâmetro N, onde $N\in\mathbb{N}.$ Para cada N, a wavelet $_N\psi$ possui as seguintes propriedades: o tamanho do seu suporte é 2N-1, seus momentos de ordem $0,\cdots, N-1$ são nulos e sua regularidade cresce com N. A regularidade de uma wavelet é importante em compressão de dados, por exemplo, em imagens a qualidade visual depende da regularidade da wavelet utilizada. Nesta dissertação, construiremos as wavelets $_N\psi$ e, a partir de estimativas do decaimento da transformada de Fourier de $_N\phi$, onde $_N\phi$ é a função de escala associada à $_N\psi$, seguindo as referências Daubechies \cite{daubart} e Volkmer \cite{volkmer}, analisaremos a regularidade de $_N\psi$. Mais precisamente, para $\alpha = n + \beta,$ onde $n \in \mathbb{N}$ e $ 0 \leq \beta < 1,$ seja $C^{\alpha}(\mathbb{R})$ o conjunto de todas as funções f que são n vezes continuamente diferenciáveis e tais que a sua n-ésima derivada $f^{(n)}$ é Hölder contínua com expoente $\beta.$ Seguindo Daubechies \cite{daubart}, mostraremos que $_N\psi\in C^{\alpha_N}(\mathbb{R})$, onde $\displaystyle \lim_{N\rightarrow \infty}\frac{\alpha_N}{N}=1-\frac{\log 3}{2 \log 2}\approx0,2075.$ Obtemos também cotas inferiores para $\alpha_N$ para valores pequenos de N. Por outro lado, o índice de regularidade da transformada de Fourier de ${_N\phi}$, denotado por $\gamma_N,$ é o supremo sobre todos os $\gamma$ tais que $\int_{-\infty}^\infty(1+|\omega|)^\gamma |\hat{\phi}(\omega)|\, d\omega<\infty$. Seguindo Volkmer \cite{volkmer}, obtemos cotas inferiores e superiores para $\gamma_N$, o que nos permite reproduzir o limite acima de uma maneira mais simples. Além disso, melhoramos a cota inferior para $\gamma_2$ e encontramos uma cota superior para o mesmo.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
disserta__o_isadora.pdf
Tamanho:
1019.11 KB
Formato:
Adobe Portable Document Format