Effects of a foot orthosis inspired by the concept of a twisted osteoligamentous plate on the kinematics of foot-ankle complex during walking: a proof of concept
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
It has been suggested that the foot acts as a twisted osteoligamentous plate to control pronation and facilitate supination during walking. The aim of this study was to investigate the effect of an orthosis inspired by the concept of a foot’s twisted osteoligamentous plate on the kinematics of foot-ankle complex. Thirty-five subjects underwent a kinematic assessment of the foot-ankle complex during walking using three different orthoses: (1) Twisted Plate Spring (TPS) orthosis: inspired by the concept of a twisted osteoligamentous plate shape and made with a spring-like material (carbon fiber); (2) Flat orthosis: control orthosis made of a non-elastic material with a non-inclined surface; and (3) Rigid orthosis: control orthosis made of a non-elastic material, with the same shape of the TPS. Repeated measures analyses of variance demonstrated that the TPS reduced the duration and magnitude of rearfoot eversion (p ≤ 0.03), increased rearfoot inversion relative to shank (p < 0.01), increased forefoot eversion relative to rearfoot (p < 0.01), and increased peak of plantar flexion of forefoot relative to rearfoot during the propulsive phase (p = 0.01) compared to Flat orthosis. The effects of the TPS were different from the Rigid orthosis, demonstrating that, alongside shape, material properties were a determinant factor for the obtained results. The findings of this study help clarify the role of a mechanism similar to a twisted osteoligamentous plate on controlling foot pronation and facilitating supination during the stance phase of walking.
Abstract
Assunto
Biomecânica, Pé, Tornozelo, Aparelhos ortopédicos, Locomoção
Palavras-chave
Biomechanics, Foot-ankle complex, Orthoses, Twisted osteoligamentous plate, Locomotion
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S002192901930421X?via%3Dihub