Resultados de existência, de não existência e de simetria de solução para o operador p-Laplaciano fracionário com múltiplas singularidades críticas e potencial de Hardy
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Augusto César dos Reis Costa
Hamilton Prado Bueno
Paulo César Carrião
Uberlândio Batista Severo
Hamilton Prado Bueno
Paulo César Carrião
Uberlândio Batista Severo
Resumo
Nesta tese de Doutorado estudamos problemas elípticos envolvendo o operador p-Laplaciano fracionário com múltiplas singularidades críticas do tipo Hardy-Sobolev. Neste sentido, demonstramos resultados de existência, não existência e simetria para a solução.
Abstract
In this doctoral thesis we consider a problem involving the fractional p-Laplacian
operator
(−∆p)
su −µ
|u|
p−2u
|x|
p s
=
|u|
p
∗
s
(β)−2u
|x|
β
+
|u|
p
∗
s
(α)−2u
|x|
α
(x ∈ R
N
) (0.7)
where 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β 6= α, µ is a real parameter,
and p
∗
s
(α) = (p(N −α)/(N − p s) is the critical Hardy-Sobolev exponent; in particular, if α = 0
then p
∗
s
(0) = p
∗
s = N p/(N − sp) is the critical Sobolev exponent. The fractional p-Laplacian
operator is a nonlinear and nonlocal operator defined for differentiable functions by
(−∆p)
su(x) := 2 lim
²→0
+
Z
RN \B²(x)
|u(x)−u(y)|
p−2
(u(x)−u(y))
|x − y|
N+sp
d y (x ∈ R
N
). (0.8)
We prove that for the parameters in the above specified intervals and with
0 6 µ < µH := inf
u∈D
s,p
(R
N )
u6=0
[u]
p
s,p
Z
RN
u
p
|x|
p s
d x
,
there exists a weak solution u ∈ D
s,p
(R
N ) to problem (0.7). The function space where we look
for solution is the fractional homogeneous Sobolev space
D
s,p
(R
N
) :=
n
u ∈ L
p
∗
s (R
N
): [u]s,p < ∞o
,
where [u]s,p denotes the Gagliardo seminorm,
u ∈C
∞
0
(R
N
) 7−→ [u]s,p :=
µÏ
R2N
|u(x)−u(y)|
p
|x − y|
N+sp
d x d y¶ 1
p
.
A fundamental step to prove the existence result to problem (0.7) is the proof of the
independent result relative to the best Hardy constant, given by
1
K(µ,α)
:= inf
u∈D
s,p
(R
N )
u6=0
[u]
p
s,p −µ
Z
RN
|u|
p
|x|
p s
d x
ÃZ
RN
|u|
p
∗
s
(α)
|x|
α
d x! p
p
∗
s
(α)
, (0.9)
which is achieved by a nontrivial function u ∈ D
s,p
(R
N ), under the condition µ ∈ (0,µH ).
In the case p = 2 the fractional 2-Laplacian operator defined in (0.8) is denoted by
(−∆)
su(x) := (−∆2)
su(x). In this case, we consider the function space H
s
(R
N ), defined as
the closure of the space C
∞
0
(R
N ) with respect to the norm
kukHs
(RN )
:=
µZ
RN
|(−∆)
s/2u|
2
d x¶ 1
2
=
µÏ
R2N
|u(x)−u(y)|
2
|x − y|
N+2s
d x d y¶ 1
2
.
We also show that if u ∈ H
s
(R
N ) is a weak solution to problem
(−∆)
su −µ
u
|x|
2s
= |u|
q−2u +
|u|
2
∗
s
(α)−2u
|x|
α
(x ∈ R
N
), (0.10)
where 0 < s < 1, 0 < α < 2s < N, 2∗
s
(α) = 2(N − α)/(N − 2s), µ is a real parameter and q 6= 2
∗
s
,
then u ≡ 0. Therefore, problem (0.10) does not have nontrivial solution when q 6= 2
∗
s
.
The proof of this non-existence result is an immediate consequence of a Pohozaev-type
identity for problem (0.10) that we state in the following way: Suppose that u ∈ H
s
(R
N ) is a
weak solution to problem (0.10). Then the harmonic extension of u on the half-space R
N+1
+ ,
denoted by w = E(u), verifies the identity
(N −2s)
2
Ï
R
N+1
+
y
1−2s
|∇w|
2
d x d y =
1
ks
Z
RN
Ã
NF(x,u)+
X
N
i=1
xi
Z u
0
fxi
(x,t)d t!
d x, (0.11)
where ks =
Γ(s)
2
1−2sΓ(1− s)
, u = w(·, 0), f (x,u) = µ
u
|x|
2s
+ |u|
q−2u +
|u|
2
∗
s
(α)−2u
|x|
α
and F(x,s) =
Z s
0
f (x,t)d t.
Finally, still in the case p = 2 of the fractional Laplacian operator, let
0 6 µ < µ¯ := 2
2s
Γ
2
¡ N+2s
4
¢
Γ
2
¡ N−2s
4
¢,
where µ¯ is the best constant of the continuous embedding H
s
(R
N ) ,→ L
2
(R
N ,|x|
−2s
). We
prove that every positive solution u ∈ H
s
(R
N ) to problem
(−∆)
su −µ
u
|x|
2s
= |u|
2
∗
s −2u +
|u|
2
∗
s
(β)−2u
|x|
β
(x ∈ R
N
) (0.12)
is radially symmetric and decreasing with respect to some point x0 ∈ R
N , that is, for every
positive solution to problem (0.12) there exists an strictly decreasing function v : (0,+∞) →
(0,+∞) such that
u(x) = v(r ), r = |x − x0|.
Assunto
Matemática – Teses, Operador laplaciano – Teses, Potenciais de Hardy – Teses, Expoente crítico de Sobolev – Teses
Palavras-chave
p-Laplaciano fracionário, Potenciais de Hardy, Expoente crítico de Hardy-Sobolev, Identidade de Pohozaev
Citação
Departamento
Endereço externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
