Resultados de existência, de não existência e de simetria de solução para o operador p-Laplaciano fracionário com múltiplas singularidades críticas e potencial de Hardy

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Augusto César dos Reis Costa
Hamilton Prado Bueno
Paulo César Carrião
Uberlândio Batista Severo

Resumo

Nesta tese de Doutorado estudamos problemas elípticos envolvendo o operador p-Laplaciano fracionário com múltiplas singularidades críticas do tipo Hardy-Sobolev. Neste sentido, demonstramos resultados de existência, não existência e simetria para a solução.

Abstract

In this doctoral thesis we consider a problem involving the fractional p-Laplacian operator (−∆p) su −µ |u| p−2u |x| p s = |u| p ∗ s (β)−2u |x| β + |u| p ∗ s (α)−2u |x| α (x ∈ R N ) (0.7) where 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β 6= α, µ is a real parameter, and p ∗ s (α) = (p(N −α)/(N − p s) is the critical Hardy-Sobolev exponent; in particular, if α = 0 then p ∗ s (0) = p ∗ s = N p/(N − sp) is the critical Sobolev exponent. The fractional p-Laplacian operator is a nonlinear and nonlocal operator defined for differentiable functions by (−∆p) su(x) := 2 lim ²→0 + Z RN \B²(x) |u(x)−u(y)| p−2 (u(x)−u(y)) |x − y| N+sp d y (x ∈ R N ). (0.8) We prove that for the parameters in the above specified intervals and with 0 6 µ < µH := inf u∈D s,p (R N ) u6=0 [u] p s,p Z RN u p |x| p s d x , there exists a weak solution u ∈ D s,p (R N ) to problem (0.7). The function space where we look for solution is the fractional homogeneous Sobolev space D s,p (R N ) := n u ∈ L p ∗ s (R N ): [u]s,p < ∞o , where [u]s,p denotes the Gagliardo seminorm, u ∈C ∞ 0 (R N ) 7−→ [u]s,p := µÏ R2N |u(x)−u(y)| p |x − y| N+sp d x d y¶ 1 p . A fundamental step to prove the existence result to problem (0.7) is the proof of the independent result relative to the best Hardy constant, given by 1 K(µ,α) := inf u∈D s,p (R N ) u6=0 [u] p s,p −µ Z RN |u| p |x| p s d x ÃZ RN |u| p ∗ s (α) |x| α d x! p p ∗ s (α) , (0.9) which is achieved by a nontrivial function u ∈ D s,p (R N ), under the condition µ ∈ (0,µH ). In the case p = 2 the fractional 2-Laplacian operator defined in (0.8) is denoted by (−∆) su(x) := (−∆2) su(x). In this case, we consider the function space H s (R N ), defined as the closure of the space C ∞ 0 (R N ) with respect to the norm kukHs (RN ) := µZ RN |(−∆) s/2u| 2 d x¶ 1 2 = µÏ R2N |u(x)−u(y)| 2 |x − y| N+2s d x d y¶ 1 2 . We also show that if u ∈ H s (R N ) is a weak solution to problem (−∆) su −µ u |x| 2s = |u| q−2u + |u| 2 ∗ s (α)−2u |x| α (x ∈ R N ), (0.10) where 0 < s < 1, 0 < α < 2s < N, 2∗ s (α) = 2(N − α)/(N − 2s), µ is a real parameter and q 6= 2 ∗ s , then u ≡ 0. Therefore, problem (0.10) does not have nontrivial solution when q 6= 2 ∗ s . The proof of this non-existence result is an immediate consequence of a Pohozaev-type identity for problem (0.10) that we state in the following way: Suppose that u ∈ H s (R N ) is a weak solution to problem (0.10). Then the harmonic extension of u on the half-space R N+1 + , denoted by w = E(u), verifies the identity (N −2s) 2 Ï R N+1 + y 1−2s |∇w| 2 d x d y = 1 ks Z RN à NF(x,u)+ X N i=1 xi Z u 0 fxi (x,t)d t! d x, (0.11) where ks = Γ(s) 2 1−2sΓ(1− s) , u = w(·, 0), f (x,u) = µ u |x| 2s + |u| q−2u + |u| 2 ∗ s (α)−2u |x| α and F(x,s) = Z s 0 f (x,t)d t. Finally, still in the case p = 2 of the fractional Laplacian operator, let 0 6 µ < µ¯ := 2 2s Γ 2 ¡ N+2s 4 ¢ Γ 2 ¡ N−2s 4 ¢, where µ¯ is the best constant of the continuous embedding H s (R N ) ,→ L 2 (R N ,|x| −2s ). We prove that every positive solution u ∈ H s (R N ) to problem (−∆) su −µ u |x| 2s = |u| 2 ∗ s −2u + |u| 2 ∗ s (β)−2u |x| β (x ∈ R N ) (0.12) is radially symmetric and decreasing with respect to some point x0 ∈ R N , that is, for every positive solution to problem (0.12) there exists an strictly decreasing function v : (0,+∞) → (0,+∞) such that u(x) = v(r ), r = |x − x0|.

Assunto

Matemática – Teses, Operador laplaciano – Teses, Potenciais de Hardy – Teses, Expoente crítico de Sobolev – Teses

Palavras-chave

p-Laplaciano fracionário, Potenciais de Hardy, Expoente crítico de Hardy-Sobolev, Identidade de Pohozaev

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto