Control of infection versus articular damage: role of neutrophils and 5- lipoxygenase in septic arthritis

dc.creatorDaiane Boff
dc.date.accessioned2021-02-01T15:18:30Z
dc.date.accessioned2025-09-09T00:14:56Z
dc.date.available2021-02-01T15:18:30Z
dc.date.issued2017-08-21
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.identifier.urihttps://hdl.handle.net/1843/34914
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectArtrite
dc.subjectStaphylococcus aureus
dc.subjectQuimiocinas
dc.subjectAraquidonato 5-lipoxigenase
dc.subjectReceptores de lipoxinas
dc.subject.otherArthritis
dc.subject.otherStaphylococcus aureus
dc.subject.otherChemokines
dc.subject.other5-lipoxygenase
dc.subject.otherLipoxin A4
dc.titleControl of infection versus articular damage: role of neutrophils and 5- lipoxygenase in septic arthritis
dc.typeTese de doutorado
local.contributor.advisor-co1Paul Proost
local.contributor.advisor-co1Mauro Martins Teixeira
local.contributor.advisor-co1Sofie Struyf
local.contributor.advisor1Flávio Almeida Amaral
local.contributor.advisor1Latteshttp://lattes.cnpq.br/6879375273660867
local.contributor.referee1Angélica Thomaz Vieira
local.contributor.referee1Graciela Andrei
local.contributor.referee1Fabiana Simão Machado
local.contributor.referee1Adriana Maria Kakchasi
local.creator.Latteshttp://lattes.cnpq.br/2103774626130020
local.description.resumoStaphylococcus aureus is the main pathogen associated with septic arthritis. Upon infection, neutrophils are quickly recruited to the joint by different chemoattractants, such as chemokines and leukotriene B4 (LTB4). Although their excessive accumulation is associated with intense pain and permanent articular damage, neutrophils have an important function in controlling bacterial burden. This work aimed to study the role of chemokines and the enzyme 5-lipoxygenase (5-LO) in the control of infection, hypernociception, and tissue damage in S. aureus-induced septic arthritis in mice. The blockade of the chemokine receptors CXCR1/2 from the beginning of infection decreased neutrophil accumulation in S. aureus-infected joint, contributing to the reduction of articular damage and hypernociception, although it increased the bacterial load. CXCR1/2 was important for the killing of S. aureus by purified human neutrophils. The later start of the treatment did not increase the bacterial load, but only transiently decreased hypernociception and did not improved tissue damage. Using another strategy, we blocked the chemokine binding to glycosaminoglycans (GAGs) by intravenously injection of CXCL9 (74-103). Although this treatment decreased neutrophil accumulation in peptidoglycan- and S. aureus-infected joints, during infection it was not effective to reduce articular damage and hypernociception and increased the bacterial load. In another set of experiments, 5-lipoxygenase (LO)-/- mice had a reduced neutrophil accumulation, joint damage, hypernociception, and bacterial load 7 days after S. aureus injection compared to wild type (WT) mice. At day 4, there were increased numbers of activated cluster of differentiation 11c (CD11c)+ cells and T lymphocytes in the joint and draining lymph node of 5-LO-/- compared to WT mice. At this time point, there was an increase of lipoxin A4 (LXA4)/LTB4 ratio in the joint, two byproducts from 5-LO activity. The blockade of the LXA4 surface receptor, ALX/formyl peptide receptor (FPR)2, in WT mice decreased the bacterial load in infected joints. Corroborating, the injection of LXA4 in 5-LO-/- mice increased the number of recovered bacteria. Interestingly, LXA4-treated human dendritic cells decreased chemotaxis under CCL21 stimulation. In conclusion, the blockade of CXCR1/2, chemokine-GAG binding and LXA4 activity could be useful for the improvement of current treatment of S. aureus-induced arthritis by different mechanisms, but commonly by decreasing neutrophil recruitment.
local.publisher.countryBrasil
local.publisher.departmentICB - DEPARTAMENTO DE BIOQUÍMICA E IMUNOLOGIA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Bioquímica e Imunologia

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
thesis final version Daiane Boff.pdf
Tamanho:
3.55 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: