Uma nova abordagem baseada em margem para seleção de modelos neurais
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Cristiano Leite de Castro
Andre Paim Lemos
Rogerio Martins Gomes
Andre Paim Lemos
Rogerio Martins Gomes
Resumo
Este trabalho apresenta uma nova estratégia de decisão para o aprendizado multiobjetivo de redes neurais artificiais. O objetivo é encontrar no conjunto pareto-ótimo, a solução que fornece a melhor capacidade de generalização. A abordagem proposta para a tomada decisão é baseada em uma estimativa geométrica para a margem (distância) máxima de separação entre as classes, que é obtida através das seguintes etapas: modelagem dos padrões de entrada com o grafo de gabriel, detecção das bordas de separação das classes e síntese de padrões junto à região de margem máxima. Essa metodologia permite que modelos suaves (que ignoram ruído) e bem ajustados sejam selecionados de forma transparente para o usuário, ou seja, sem a necessidade da definição de parâmetros ou do uso de um conjunto representativo de validação. Resultados com benchmarks conhecidos na literatura mostraram que o decisor proposto, aliado ao treinamento multiobjetivo, foi eficiente no controle da generalização de modelos neurais.
Abstract
This work presents a new decision-making strategy to the multiobjective learning of artificial neural networks. The objective is to find the solution within the pareto-optimal set that has the best generalization performance. The proposed decision-making approach is based on a geometric approximation to the maximum margin (distance) of class separation, which is estimated through the following steps: modeling of input patterns using the gabriel graph, detection of class separation borders and synthesis of patterns along the maximum margin region. This methodology allows the selection of smooth (that ignore noise) and well-fitting models in a straightforward manner, i.e., without the need of the tuning of parameters by the user or the use of a representative validation data set. Results on benchmarks in literature showed that our decision-making method, combined with multiobjective training, was efficient to control the generalization of neural models.
Assunto
Processo decisório, Engenharia elétrica
Palavras-chave
Tomada de decisão, Grafo de gabriel, classificação, Aprendizado de máquina multiobjetivo