Observation of well-defined Kohn-anomaly in high-quality graphene devices at room temperature

dc.creatorAndreij de Carvalho Gadelha
dc.creatorRafael Battistella Nadas
dc.creatorTiago Campolina Barbosa
dc.creatorKenji Watanabe
dc.creatorTakashi Taniguchi
dc.creatorLeonardo Cristiano Campos
dc.creatorMarkus B. Raschke
dc.creatorAdo Jorio de Vasconcelos
dc.date.accessioned2025-02-23T17:55:03Z
dc.date.accessioned2025-09-09T01:28:58Z
dc.date.available2025-02-23T17:55:03Z
dc.date.issued2022
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.description.sponsorshipFINEP - Financiadora de Estudos e Projetos, Financiadora de Estudos e Projetos
dc.description.sponsorshipINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)
dc.identifier.doihttps://doi.org/10.1088/2053-1583/ac8e7f
dc.identifier.issn2053-1583
dc.identifier.urihttps://hdl.handle.net/1843/80340
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartof2D Materials
dc.rightsAcesso Restrito
dc.subjectGrafeno
dc.subjectEfeito de Raman
dc.subjectOptoeletrônica
dc.subject.otherDevices
dc.subject.otherRoom temperature
dc.subject.otherGraphene
dc.subject.otherPhotodoping
dc.subject.otherRaman
dc.subject.otherOptoelectronics
dc.subject.otherKohn-anomaly
dc.titleObservation of well-defined Kohn-anomaly in high-quality graphene devices at room temperature
dc.typeArtigo de periódico
local.citation.epage5
local.citation.issue4
local.citation.spage1
local.citation.volume9
local.description.resumoDue to its ultra-thin nature, the study of graphene quantum optoelectronics, like gate-dependent graphene Raman properties, is obscured by interactions with substrates and surroundings. For instance, the use of doped silicon with a capping thermal oxide layer limited the observation to low temperatures of a well-defined Kohn-anomaly behavior, related to the breakdown of the adiabatic Born–Oppenheimer approximation. Here, we design an optoelectronic device consisting of single-layer graphene electrically contacted with thin graphite leads, seated on an atomically flat hexagonal boron nitride substrate and gated with an ultra-thin gold layer. We show that this device is optically transparent, has no background optical peaks and photoluminescence from the device components, and no generation of laser-induced electrostatic doping (photodoping). This allows for room-temperature gate-dependent Raman spectroscopy effects that have only been observed at cryogenic temperatures so far, above all the Kohn-anomaly phonon energy normalization. The new device architecture, by decoupling graphene optoelectronic properties from the substrate effects, allows for observing quantum phenomena at room temperature.
local.identifier.orcidhttps://orcid.org/0000-0002-6350-7680
local.identifier.orcidhttps://orcid.org/0000-0001-6165-5981
local.identifier.orcidhttps://orcid.org/0000-0001-6303-4222
local.identifier.orcidhttps://orcid.org/0000-0003-3701-8119
local.identifier.orcidhttps://orcid.org/0000-0002-1467-3105
local.identifier.orcidhttps://orcid.org/0000-0001-6792-7554
local.identifier.orcidhttps://orcid.org/0000-0003-2822-851X
local.identifier.orcidhttps://orcid.org/0000-0002-5978-2735
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://iopscience.iop.org/article/10.1088/2053-1583/ac8e7f

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: