Random walks on the reputation graph
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Altigran Soares da Silva
Edmundo Albuquerque Souza e Silva
Rodrygo Luis Teodoro Santos
Edmundo Albuquerque Souza e Silva
Rodrygo Luis Teodoro Santos
Resumo
The identification of reputable entities is an important task in business, education, and in many other fields. In general, the reputation of an entity reflects its public perception, which touches upon a variety of aspects that may impact the identity of the entity, such as its prowess, integrity, and trustworthiness. Indeed, more reputable entities are presumably a better fit for most purposes. Thus, while reputation is a widespread notion in society, it is albeit an arguably ill-defined one. As a consequence, quantifyingreputationischallenging. Indeed, existingattemptstoquantifyreputation rely on either manual assessments or on a restrictive definition of reputation. Inthisthesis,insteadofrelyingonasingleandprecisedefinitionofreputation,we proposetoexploitthetransference ofreputationamongentitiesinordertoidentifythe most reputable ones. To this end, we introduce a conceptual framework of reputation flowsandproposeametricbasedonit, whichwecallP-score. Thisframeworkconsists of a random walk model that allows inferring the reputation of a target set of entities with respect to suitable sources of reputation. By using it, we can better understand how reputation flows between distinct entities in a reputation graph. Weinstantiateourmodelinanacademicsearchsettingtoaddressthreecommon ranking tasks namely, research group ranking, author ranking, and publication venue ranking. By relying on publishing behavior as a reputation signal, we demonstrate the effectiveness of our model in contrast to standard citation-based approaches for identifying reputable venues, authors, and research groups in the broad area of Computer Science. In addition, we demonstrate the robustness of our model to perturbations in the selection of reputation sources. Finally, we show that effective reputation sources can be chosen via the proposed model itself in a fully automatic fashion.
Abstract
Assunto
Palavras-chave
Random walks on the reputation graph