Bilhares convexos em superfícies de curvatura constante
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Sylvie M Oliffson Kamphorst L S
Mario Jorge Dias Carneiro
Salvador Addas Zanata
José Barbosa Gomes
Rafael Ramirez-ros
Mario Jorge Dias Carneiro
Salvador Addas Zanata
José Barbosa Gomes
Rafael Ramirez-ros
Resumo
Consideraremos uma curva simples, fechada e geodesicamente estritamente convexa na esfera ou no plano hiperbólico e uma partícula em movimento livre geodésico dentro da região limitada por essa curva sofrendo colisões elásticas com a curva no pontos de choque. Mostraremos que a aplicação de bilhar nessas superfícies úm difeomorsmo conservativo do tipo twist, estabeleceremos condições sucientes para não persistência de curvas ressonantes no bilhar circular geodésico perturabado. Também mostramos que bilhares nessas regiões possuem genericamente uma quantidade finita de órbitas periódicas de período ne ela são todas hiperbólicas. Estabelecemos também que o conjunto das órbitas de período três tem dimensão de Hausdorff entre zero e um, tendo nesse último caso reta tangente em quase todo ponto.
Abstract
We consider a simple closed and geodesically strictly convex curve on hemisphere or hyperbolic plane and a moving particle free geodesic within the region bounded by this curve suffering elastic collisions with the curve at the points of shock. We show that the billiard map on these curves in these surfaces are a conservative difieomorphism twist-like,we will establish sucient conditions for non-persistence of resonant curves in perturbed gedesic circular billiards. We also show that billiards in these regions generically have a nite number of periodic orbits of any period n and they are all hyperbolic. We also established that the set of orbits of period three has Hausdorff dimension between zero and one, and in the latter case the tangent line at almost every point
Assunto
Matemática, Comportamento caótico nos sistemas, Dinâmica, Sistemas dinâmicos diferenciais, Teoria ergodica
Palavras-chave
bilhares convexos, curvatura constante