Bilhares convexos em superfícies de curvatura constante

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Sylvie M Oliffson Kamphorst L S
Mario Jorge Dias Carneiro
Salvador Addas Zanata
José Barbosa Gomes
Rafael Ramirez-ros

Resumo

Consideraremos uma curva simples, fechada e geodesicamente estritamente convexa na esfera ou no plano hiperbólico e uma partícula em movimento livre geodésico dentro da região limitada por essa curva sofrendo colisões elásticas com a curva no pontos de choque. Mostraremos que a aplicação de bilhar nessas superfícies úm difeomorsmo conservativo do tipo twist, estabeleceremos condições sucientes para não persistência de curvas ressonantes no bilhar circular geodésico perturabado. Também mostramos que bilhares nessas regiões possuem genericamente uma quantidade finita de órbitas periódicas de período ne ela são todas hiperbólicas. Estabelecemos também que o conjunto das órbitas de período três tem dimensão de Hausdorff entre zero e um, tendo nesse último caso reta tangente em quase todo ponto.

Abstract

We consider a simple closed and geodesically strictly convex curve on hemisphere or hyperbolic plane and a moving particle free geodesic within the region bounded by this curve suffering elastic collisions with the curve at the points of shock. We show that the billiard map on these curves in these surfaces are a conservative difieomorphism twist-like,we will establish sucient conditions for non-persistence of resonant curves in perturbed gedesic circular billiards. We also show that billiards in these regions generically have a nite number of periodic orbits of any period n and they are all hyperbolic. We also established that the set of orbits of period three has Hausdorff dimension between zero and one, and in the latter case the tangent line at almost every point

Assunto

Matemática, Comportamento caótico nos sistemas, Dinâmica, Sistemas dinâmicos diferenciais, Teoria ergodica

Palavras-chave

bilhares convexos, curvatura constante

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por