Formation and release of NO from ruthenium nitrosyl ammine complexes [Ru(NH3)5(NO)]²+/³+ in aqueous solution: a theoretical investigation

dc.creatorGabriel Libânio Silva Rodrigues
dc.creatorWillian Ricardo Rocha
dc.date.accessioned2023-02-23T14:50:59Z
dc.date.accessioned2025-09-09T00:15:42Z
dc.date.available2023-02-23T14:50:59Z
dc.date.issued2016
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)
dc.identifier.doihttps://doi.org/10.1021/acs.jpcb.6b08813
dc.identifier.issn15205207
dc.identifier.urihttps://hdl.handle.net/1843/50315
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Restrito
dc.subjectFísico-química
dc.subjectMoléculas
dc.subjectMecânica quântica
dc.subjectSolventes
dc.subjectÓxido nítrico
dc.subjectFuncionais de densidade
dc.subjectComplexos metálicos de transição
dc.subjectCompostos de rutênio
dc.subjectMétodo de Monte Carlo
dc.subject.otherLigands
dc.subject.otherMolecules
dc.subject.otherNitrosyls
dc.subject.otherQuantum mechanics
dc.subject.otherSolvents
dc.titleFormation and release of NO from ruthenium nitrosyl ammine complexes [Ru(NH3)5(NO)]²+/³+ in aqueous solution: a theoretical investigation
dc.typeArtigo de periódico
local.citation.epage11833
local.citation.issue45
local.citation.spage11821
local.citation.volume120
local.description.resumoIn this article, density functional theory in conjunction with Monte Carlo statistical mechanical simulation was used to investigate the electronic structure, reduction potential, solvation, and solvent effects on the electronic spectra of nitrosyl ammine complexes using [Ru(NH3)5(NO)]²+/²+ as model compounds. In addition, ligand exchange reactions with solvent water molecules were also investigated. It is shown that the complexes are involved in strong hydrogen bonds in aqueous solution, with mean average energies of −13.5 ± 0.4 and −22.4 ± 0.4 kcal mol–1 for Ru(II) and Ru(III), respectively. Interestingly, for all the complexes studied, the NO ligand is not involved in hydrogen bonding interactions in aqueous solution. These strong hydrogen bonds are responsible for the high stability of these complexes in aqueous solution, showing formation constants Kf greater than 1021. The complex [Ru(NH3)5(NO)]3+ can easily be reduced by biological reducing agents in both the singlet and triplet states; however, the reduction is easier in the triplet state, which has a positive reduction potential of 1.70 V. The formation of [Ru(NH3)5(NO)]3+ in its most stable singlet state may take place through at least two singlet–triplet surface crossings leading to nonadiabatic effects. The existence of the minimum-energy crossing points makes the release of NO from the triplet state more favorable, with an activation energy almost seven times lower (∼6 kcal mol–1).
local.identifier.orcidhttps://orcid.org/0000-0002-6580-3336
local.identifier.orcidhttps://orcid.org/0000-0002-0025-2158
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE QUÍMICA
local.publisher.initialsUFMG
local.url.externahttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b08813

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: