Identificando fatores associados à ocorrência de demissão em empresas europeias durante a pandemia de COVID-19
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Monografia de especialização
Título alternativo
Identification of factors associated with the occurrence of layoffs in European companies during the COVID-19 pan
Primeiro orientador
Membros da banca
Guilherme Augusto Veloso
Lívia Maria Dutra
Lívia Maria Dutra
Resumo
Este trabalho tem como objetivo identificar os fatores associados às firmas que demitiram durante a pandemia de COVID-19 na Europa. Durante este período, as operações de diversas atividades econômicas tiveram que ser reduzidas ou paralisadas, o que acabou por gerar queda no faturamento das firmas e, consequentemente, demissões. Todavia, o efeito pode ter sido diferente,
a depender das características individuais da firma observada. Para tanto, foram explorados dois modelos de classificação: Regressão Logística e Árvore de Decisão. Os dados foram coletados da Enterprise Surveys, uma base de dados do Banco Mundial com informações no nível da firma. O modelo que melhor se ajustou aos dados foi a Regressão Logística, tendo apresentado uma
capacidade preditiva moderada. Os resultados mostraram que o percentual de produtos que é exportado, o recebimento de ajuda governamental e o tamanho da firma em termos do total de funcionários são características associadas a uma maior chance de demissão. Estimou-se que a chance de demissão nas empresas que receberam ajuda governamental foi mais de duas vezes maior que nas empresas que não receberam auxílio. Embora possa ser um resultado contra intuitivo, isto pode estar relacionado ao porte ou outras características específicas das firmas analisadas. Uma análise mais minuciosa se faz necessária a fim de entender a relação entre eventos num contexto de alta complexidade.
Abstract
The aim of this study is to identify the factors associated with firms that have made redundancies during the COVID-19 pandemic in Europe. During this period, the operations of various economic activities had to be reduced or paralyzed, which ended up firms’ turnover and, consequently, layoffs. However, the effect may have been different, depending on the individual characteristics of the firm observed. To two classification models were explored: Logistic Regression and Decision Tree. The data was collected from Enterprise Surveys, a World Bank database with information at the firm level. The model that best fitted the data was Logistic Regression, with a moderate predictive capacity. The results showed that the percentage of products exported, receipt of government aid government aid and the size of the firm in terms of total employees are characteristics associated with a greater chance of dismissal. It was estimated that the chance of dismissal in companies that received government aid was more than twice as high as in companies that did not receive companies that did not receive aid. Although this may be a counter intuitive result, it may be related to the size or other specific characteristics of the firms analyzed. A more detailed analysis is needed in order to understand the relationship between events in a highly complex context.
Assunto
Estatística, Covid-19, Colaboradores - Empresa – Desligamento
Palavras-chave
COVID-19, Firmas, Demissões
Citação
Departamento
Endereço externo
Coleções
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
