A lógica de Brouwer e o príncipio ex falso quodlibet
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Antonio Mariano Nogueira Coelho
André da Silva Porto
André da Silva Porto
Resumo
De um ponto de vista tanto histórico quanto filosófico, o desenvolvimento da lógica intuicionista por Arend Heyting é usualmente justificado como a formalização das ideias de L.E.J. Brouwer sobre a natureza da lógica e sua relação com a atividade matemática. Mostraremos, no entanto, que um entendimento mais adequado da concepção de lógica desenvolvida na obra de Brouwer torna problemática a admissão do princípio de inferência conhecido como ex falso quodlibet como axioma de um sistema formal que pretende ser a codificação de suas ideias e que as justificativas apresentadas em favor da aceitação desse princípio na lógica intuicionista são insatisfatórias do ponto de vista brouweriano. Assim, a despeito de sua tradicional identificação como o sistema formal mais adequado para representar formalmente a concepção de lógica de Brouwer, sustenta-se que a lógica intuicionista não deveria ser considerada como tal. Por fim, argumenta-se que a lógica minimal, que difere da lógica intuicionista precisamente por não admitir o princípio mencionado acima como axioma, seria um sistema formal mais adequado do que a lógica intuicionista de Heyting para ser tomado como uma imagem formal da concepção de lógica de Brouwer
Abstract
From both a historical and philosophical point of view, the development of intuitionist logic by Arend Heyting is usually justified as the formalization of L.E.J. Brouwers ideas on the nature of logic and its relationship with mathematical activity. It is shown, however, that a more adequate understanding of the conception of logic developed in Brouwers works render the admission of the principle of inference known as ex falso quodlibet problematic as axiom of a formal system which purports to be the codification of his ideas and also that the justifications presented in favor of the acceptance of this principle in intuitionist logic are not satisfactory from a brouwerian point of view. Thus, despite its traditional identification as the most adequate formal system to formally represent Brouwers conception of logic, it is maintained that intuitionist logic should not be considered as such. Finally, it is argued that minimal logic, which differs from intuitionist logic precisely by not admitting the above mentioned principle as axiom, would be a formal system more adequate than Heytings intuitionist logic to be taken as a formal image of Brouwers conception of logic
Assunto
Lógica simbólica e matemática, Lógica, Filosofia, Lógica matemática não clássica
Palavras-chave
Lógica simbólica e matemática, Lógica, Filosofia, Lógica matemática não clássica