Operation of a grid-tied CMC based on a SiC forward SST under unbalanced PV power generation
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
The application of Cascaded Multilevel Converters (CMC) in large-scale photovoltaic plants connected to the utility grid has many advantages, such as the absence of sinusoidal filters and line-frequency transformers. Improved overall performance under partial shading conditions is possible due to the distribution of arrays among a large number of maximum power point trackers. In this situation, although the cells operate at different power levels, the three-phase currents injected into the point of common coupling must be balanced. A suitable control technique is required to achieve this goal. This paper presents a complete algorithm to handle three-phase power balance and single-phase power harvesting simultaneously. Simulation results assuming a medium-voltage system connected to a typical utility-grid illustrate the dynamic and steady-state performance capability of the proposed strategy. Experimental results from a low-voltage, solid state transformer-based, three-cell prototype are also included.
Abstract
Assunto
Eletrônica de potência
Palavras-chave
Modular multilevel converters, Power quality, Silicon carbide (SiC), Solar power generation
Citação
Curso
Endereço externo
https://ieeexplore.ieee.org/document/8337771