Structural, dynamical and symbolic observability: from dynamical systems to networks

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Classical definitions of observability classify a system as either being observable or not. Observability has been recognized as an important feature to study complex networks, and as for dynamical systems the focus has been on determining conditions for a network to be observable. About twenty years ago continuous measures of observability for nonlinear dynamical systems started to be used. In this paper various aspects of observability that are established for dynamical systems will be investigated in the context of networks. In particular it will be discussed in which ways simple networks can be ranked in terms of observability using continuous measures of such a property. Also it is pointed out that the analysis of the network topology is typically not sufficient for observability purposes, since both the dynamics and the coupling of such nodes play a vital role. Some of the main ideas are illustrated by means of numerical simulations.

Abstract

Assunto

Sistemas dinâmicos

Palavras-chave

One of the many concepts used to analyze dynamical systems and networks is observability., This paper has aimed at providing a general view of how some concepts related to observability have developed in the realm of nonlinear dynamics and to point out some important differences among the approaches. In order to make distinctions clearer, some different types of observability measures were proposed. Also, the use of the discussed techniques in the field of dynamical networks has been discussed briefly.

Citação

Curso

Endereço externo

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206180

Avaliação

Revisão

Suplementado Por

Referenciado Por