Cálculo da energia de formação de ligas superficiais e nanopartículas através do método BFS
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Mario Sergio de Carvalho Mazzoni
Roberto Magalhaes Paniago
Roberto Magalhaes Paniago
Resumo
A busca por novos materiais com propriedades cada vez mais detalhadas e otimizadas fez surgir uma nova técnica na área de análise de materiais, a simulação computacional. Com o intuito de ajudar as técnicas experimentais existentes hoje, estes novos métodos não só esclarecem e prevêem propriedades novas como reduzem consideravelmente o custo de uma pesquisa. Uma recente aquisição à família de técnicas computacionais é o BFS (Bozzolo-Ferrante-Smith), um método semi-empírico usado para avaliar a energia de ligas de multi-componentes. O método BFS é baseado na Teoria do Cristal Equivalente (ECT) e já foi aplicado em uma grande variedade de sistemas metálicos, sempre com grande sucesso. Seguindo as idéias deste método, um programa foi desenvolvido e implementado para o cálculo da energia de formação de ligas de superfície e de nanopartículas metálicas. A linguagem utilizada foi C e todos os cálculos foram realizados no Linux PC-cluster do Laboratório de Física de Superfícies. Após a implementação, o programa foi testado em diversos sistemas, como PdCu(100), PtCu(100) e PdCu(111). A comparação dos resultados obtidos nestes testes com os teóricos encontrados na literatura mostraram que nosso programa reproduz adequadamente a metodologia do BFS. Após a fase de testes, iniciamos a aplicação do programa no estudo de formação de nanopartículas bimetálicas. Sabe-se que estes sistemas apresentam propriedades muito diferentes das partículas não afetadas por defeitos devido ao tamanho (partículas grandes) e que são constituídas por apenas uma espécie atômica. Nanopartículas possuem um papel importante em aplicações envolvendo catálise e, recentemente, tem sido muito usado em aplicações ligadas à Biologia. O sistema que escolhemos estudar foi a nanopartícula de cobre-prata, analisando duas diferentes geometrias: o octaedro e o icosaedro. Simulações com Monte Carlo em diversas temperaturas, para diferentes concentrações de prata e para as duas geometrias foram realizadas e os resultados mostraram que a configuração de energia mínima atingida em todos os tamanhos (de 50 a 15000 átomos) ocorrida quando todos os átomos de prata envolviam um núcleo denso de cobre com uma monocamada apenas. Uma comparação entre a estabilidade das duas geometrias em função do número de átomos de cada nanopartícula confirmou que o icosaedro é energeticamente favorável para pequenos tamanhos. Contudo, o valor do número de átomos na região de transição icosaedro-octaedro não está muito bem determinado ainda, pela relaxação aparentemente superestimar o decréscimo da energia icosaedro.
Abstract
Assunto
Física
Palavras-chave
Método BFS