State estimation for aerial vehicles in forest environments

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de evento

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Autonomous navigation of unnamed vehicles in a forest is a challenging task. In such environments, due to the canopies of the trees, GNSS-based navigation can be degraded or even unavailable. In this paper we propose a state estimation solution for aerial vehicles based on the fusion of GNSS, AHRS and LIDAR-based odometry. In our LIDAR odometry solution, the trunks of the trees are used in a feature-based scan-matching algorithm to estimate the relative movement of the vehicle. Our method uses a robust adaptive fusion algorithm based on the unscented Kalman filter. Experimental data collected during the navigation of a quadrotor in an actual forest environment is used to demonstrate the effectiveness of our approach.

Abstract

Assunto

Robôs - Sistemas de controle, Veículos autônomos

Palavras-chave

Measurement by laser beam , Global navigation satellite system , Forestry , Sensors , Laser beams , Feature extraction , Measurement uncertainty, Aerial Vehicles , Global Navigation Satellite System , Tree Trunks , Fusion Algorithm , Unscented Kalman Filter , Covariance Matrix , Relative Measure , Related Information , Measurement Uncertainty , Position Information , Global Measures , Absolute Measures , Position Estimation , Coordinate Frame , Influence Of Outliers , Adaptive Filter , Motion Estimation , Vehicle State , Slow Drift , Measurement Outliers , Micro Air Vehicles , Robot Operating System , Rotation Vector , Robust Filter , Velocity Estimation , Process Noise , Time-based , Set Of Equations , First-order Differential Equations

Citação

Curso

Endereço externo

https://ieeexplore.ieee.org/abstract/document/8797822

Avaliação

Revisão

Suplementado Por

Referenciado Por