In silico discovery of GPCR ligands using graph-based signatures and auxiliary features

dc.creatorJoão Paulo Linhares Velloso
dc.date.accessioned2023-05-04T14:46:49Z
dc.date.accessioned2025-09-08T23:40:19Z
dc.date.available2023-05-04T14:46:49Z
dc.date.issued2022-04-27
dc.description.abstractOs receptores acoplados a proteína G (GPCR) são cruciais para muitos processos fisiológicos vitais, incluindo controle da divisão e proliferação celular, regulação do transporte de íons, modu- lação sinapse nervosa, homeostase, modulação e modificação da morfologia celular. Eles também estão envolvidos em muitos processos patológicos, como Alzheimer e Parkinson, distúrbios cardiovasculares, asma, depressão e diabete. Dada a sua importância biológica, mais de um terço dos medicamentos aprovados pela FDA têm como alvo esses receptores. No entanto, o desenvolvimento de fármacos para GPCRs passa por altas taxas de fracasso, com baixa eficácia in vivo sendo o principal contribuinte nesse processo. Isso resulta em apenas 7% de todos os medicamentos (incluindo outros receptores) em estudos de fase I sendo comercializados. Esta tese se concentrou no desenvolvimento de modelos de aprendizado de máquina capazes de prever a bioatividade de pequenas moléculas ao interagir com GPCRs. Pretendemos com essas ferramentas apoiar a descoberta de novos fármacos. Os modelos desenvolvidos (compõe o servidor web pdCSM-GPCR) baseiam-se em derivar uma série de assinaturas moleculares de ligantes conhecidos, associando essas assinaturas a bioatividade e modelando essas questões como problemas de regressão, sem a necessidade de informação estrutural do receptor. Devido a esta característica, a mesma abordagem pode ser usada para quaisquer GPCRs que já tenham sido avaliadas através triagem para ligantes, e também para outros alvos importantes, incluindo quinases e canais iônicos controlados por ligantes. Nossos modelos compõem o recurso computa- cional mais abrangente para previsão da bioatividade de GPCR até o momento, e inclui também suporte para o desenvolvimento de medicamentos para GPCRs órfãos. Nossa abordagem al- cançou correlações de Pearson de até 0,89, por meio de validação cruzada de 10 vezes e em testes cegos. Superamos significativamente os métodos anteriores. O pdCSM-GPCR foi disponibilizado gratuitamente por meio um servidor web http://biosig.unimelb.edu.au/pdcsm_gpcr. Também investigamos as propriedades de pequenas moléculas com alta afinidade por GPCRs a fim de identificar determinantes moleculares de reconhecimento. Em geral, ligantes potentes possuem fragmentos contendo nitrogênio e anéis aromáticos, características comuns em ligantes em todas as classes de GPCRs. Os resultados desta pesquisa fornecem ferramentas poderosas para a descoberta de fármacos e informações biológicas valiosas sobre as características que compõem os ligantes de GPCR.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/52800
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectBioinformática
dc.subjectAprendizado de Máquina
dc.subjectDesenvolvimento de Medicamentos
dc.subjectReceptores Acoplados a Proteínas-G
dc.subject.otherAprendizado de Máquina
dc.subject.otherDesenvolvimento de Medicamentos
dc.subject.otherReceptores Acoplados a Proteínas G
dc.titleIn silico discovery of GPCR ligands using graph-based signatures and auxiliary features
dc.typeTese de doutorado
local.contributor.advisor-co1David Benjamin Ascher
local.contributor.advisor1Douglas Eduardo Valente Pires
local.contributor.advisor1Latteshttp://lattes.cnpq.br/2675409574553301
local.contributor.referee1Lucas Bleicher
local.contributor.referee1Rafaela Salgado Ferreira
local.contributor.referee1Rubens Lima do Monte Neto
local.contributor.referee1Wandré Nunes de Pinho Veloso
local.creator.Latteshttp://lattes.cnpq.br/8174409471999279
local.description.resumoGPCRs are crucial receptors for many vital physiological processes including control of cell division and proliferation, regulation of ion transport, modulation of neuronal firing, homeostasis, modulation, and modification of cell morphology. They are also involved in many pathological processes, such as in Alzheimer’s and Parkinson’s disease, cardiovascular disorder, asthma, depression and diabetes. Given their biological importance, over a third of FDA approved drugs target GPCRs. Nonetheless, GPCRs lead compound development suffers from high attrition rates, with poor in vivo efficacy being the primary contributor, resulting in only 7% of all drugs (for other receptors as well) in phase I studies being marketed. This thesis focused on the development of machine learning models capable of predicting bioactivity of small molecules when interacting with GPCRs as means to support the discovery of novel leads through ranking compounds on drug discovery investigations, which would enable enriching screening libraries with compounds more likely to be active. The developed models (composing the pdCSM-GPCR tool) rely on deriving a range of molecular signatures from known ligands, associating them to bioactivities, and modelling them as regression problems, making them independent of receptor structural information. Because of this characteristic, the same approach can be used for any GPCRs which already had been screened for ligands, and also other important targets, including kinases, and ligand-gated ion channels. Our models make up the most comprehensive computational resource for prediction of GPCR bioactivity to date, including support for drug development for orphan GPCRs. Our approach achieved Pearson’s correlations of up to 0.89, across 10-fold cross- validation and blind tests. We significantly outperformed previous methods. pdCSM-GPCR was made freely available via a user-friendly web server at http://biosig.unimelb.edu.au/pdcsm_gpcr. We also investigated the properties of small molecules with high affinity for GPCRs in order to identify molecular determinants of recognition. Overall, potent ligands possess nitrogen- containing fragments and aromatic rings, features common in ligands across all classes of GPCRs. The outcomes of this research provide powerful tools for GPCR drug discovery and valuable biological insights into the characteristics that make up GPCR ligands.
local.publisher.countryBrasil
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Bioinformatica

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_ficha_ata_ap_joao_velloso_number_key_fixed.pdf
Tamanho:
29.81 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: