Boosted projections and low cost transfer learning applied to smart surveillance
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Adriano Alonso Veloso
Silvio Jamil Ferzoli Guimarães
Silvio Jamil Ferzoli Guimarães
Resumo
Computer vision is an important area related to understanding the world through images. It can be used in biometrics, by verifying whether a given face is of a certain identity, used to look for crime perpetrators in an airport blacklist, used in human-machine interactions and other goals. Deep learning methods have become ubiquitous in computer vision achieving many breakthroughs, making possible for machines, for instance, to verify if two photos belong to the same person with human-level skill. This work tackles two computer vision problems applied to surveillance. First, we explore deep learning methods for computer vision in the task of face verification and second, we explore dimensionality reduction techniques for the task of detection.
Abstract
Computer vision is an important area related to understanding the world through images. It can be used in biometrics, by verifying whether a given face is of a certain identity, used to look for crime perpetrators in an airport blacklist, used in human-machine interactions and other goals. Deep learning methods have become ubiquitous in computer vision achieving many breakthroughs, making possible for machines, for instance, to verify if two photos belong to the same person with human-level skill. This work tackles two computer vision problems applied to surveillance. First, we explore deep learning methods for computer vision in the task of face verification and second, we explore dimensionality reduction techniques for the task of detection.
Assunto
Visão por Computador, Computação, Aprendizado do computador, Teoria da estimativa
Palavras-chave
Dimensionality Reduction, Computer Vision, Machine Learning, Deep Learning