A recursive algorithm for estimating multiple models continuous transfer function with non-uniform sampling

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

A multiple model recursive least squares algorithm combined with a first-order low-pass filter transformation method, named λ-transform, is proposed for the simultaneous identification of multiple model orders continuous transfer functions from non-uniformly sampled input–output data. The λ-transformation is shown to be equivalent to a canonical transformation between discrete z-domain and δ-domain using the negative value of the λ-transform filter time-constant instead of the sampling interval parameter. The proposed algorithm deals with oversampling, sampling jitter or non-uniform sample intervals without the need for extra digital anti-aliasing pre-filtering, downsampling or interpolation algorithms, producing multiple models with a cost function that facilitates automatic selection of best-fitted models. Besides, measurement noise is noted as beneficial, bringing up an inherent bias toward low-order models. Simulated examples and a drum-boiler level experimental result exhibiting non-minimum phase behaviour illustrate the application of the proposed method.

Abstract

Assunto

Modelos matemáticos

Palavras-chave

System identification, Non-uniform sampling, Recursive least squares, Multiple models, Continuous transfer functions

Citação

Curso

Endereço externo

https://www.tandfonline.com/doi/full/10.1080/00207721.2018.1440024

Avaliação

Revisão

Suplementado Por

Referenciado Por