A recursive algorithm for estimating multiple models continuous transfer function with non-uniform sampling
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
A multiple model recursive least squares algorithm combined with a first-order low-pass filter transformation method, named λ-transform, is proposed for the simultaneous identification of multiple model orders continuous transfer functions from non-uniformly sampled input–output data. The λ-transformation is shown to be equivalent to a canonical transformation between discrete z-domain and δ-domain using the negative value of the λ-transform filter time-constant instead of the sampling interval parameter. The proposed algorithm deals with oversampling, sampling jitter or non-uniform sample intervals without the need for extra digital anti-aliasing pre-filtering, downsampling or interpolation algorithms, producing multiple models with a cost function that facilitates automatic selection of best-fitted models. Besides, measurement noise is noted as beneficial, bringing up an inherent bias toward low-order models. Simulated examples and a drum-boiler level experimental result exhibiting non-minimum phase behaviour illustrate the application of the proposed method.
Abstract
Assunto
Modelos matemáticos
Palavras-chave
System identification, Non-uniform sampling, Recursive least squares, Multiple models, Continuous transfer functions
Citação
Departamento
Curso
Endereço externo
https://www.tandfonline.com/doi/full/10.1080/00207721.2018.1440024