Aspectos inferenciais em experimentos de Bernoulli comerros e classificações repetidas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Linda Lee Ho
Luiz Henrique Duczmal
Sueli Aparecida Mingoti
Edna Afonso Reis
Vicente Garibay Cancho

Resumo

Este trabalho discute o uso de uma função de verossimilhança na estimação da proporção de itens conformes na presença de erros de classificação e de classificações repetidas. Para investigar a qualidade dos estimadores bayesianos foi construído um estudo comparativo entre a técnica proposta e um modelo descrito por Evans et al. (1996), considerando, para isso, a influência do tamanho da amostra, do número de classificações repetidas, dos erros de julgamento, da proporção de conformidade e de duas distribuições a priori para os erros: Beta(1,2) e Beta(2,10). As medidas estatísticas utilizadas para a comparação das metodologias foram a moda e o desvio padrão das respectivas distribuições a posteriori, além das amplitudes dos intervalos de credibilidade de máxima densidade a posteriori e do fator de Bayes. Os resultados encontrados mostraram que o modelo defendido apresentou desvios padrão e amplitudes dos intervalos de credibilidades inferiores àqueles obtidos pela abordagem concorrente, principalmente quando foi considerada a distribuição a priori Beta(1,2). Além disso, constatou-se também o fator de Bayes favoreceu o uso do modelo proposto. Além disso, foi utilizada uma metodologia de otimização multiobjetivo para obter os valores ótimo do tamanho da amostra (n), do número de classificações repetidas (m) e do critério (a) da classificação final dos itens inspecionados após as m classificações. Para realizar essa tarefa foi sugerido um algoritmo genético híbrido multiobjetivo. Exemplos numéricos ilustraram a metodologia proposta e os resultados encontrados podem ser utilizados para ajudar ao processo decisório.

Abstract

Assunto

Estatística, Estatística matemática, Algoritmos genéticos, Teoria bayesiana de decisão estatistica

Palavras-chave

Dados dicotômicos, Erros de classificação, Fator de Bayes, Inferência bayesiana, Algoritmos genéticos, Otimização multiobjetivo

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por