Diagnóstico de falhas em transformadores de potência pela análise de gases dissolvidos em óleo isolante com a utilização de redes neurais

dc.creatorRonilson de Lima
dc.date.accessioned2019-08-12T18:17:00Z
dc.date.accessioned2025-09-09T00:36:43Z
dc.date.available2019-08-12T18:17:00Z
dc.date.issued2016-12-12
dc.description.abstractThe main objective of this work is to develop a method using artificial neural networks, to perform the mapping of the gases generated in the insulating oil of the power transformers, coming from faults such as electric arc, corona effect, overloads and others. We will also describe the methods of detection of dissolved gases in oil currently used. The advantage of using neural networks over existing methods is because the method is fully numerical, well adapted to modern computational solutions practices, does not require specialized human interventions, and the analyzes are processed quickly. For the proposed system we used a multi-layer Perceptron neural network, trained by the Levenberg-Marquardt algorithm, because it is a nonlinear system, the results obtained were compared with the diagnostic criteria currently used for insulating oil, arriving at the conclusion that the systems Proposed have high accuracy in the diagnosis of faults, meeting all requirements and expectations. From a maintenance planning point of view, a well-defined maintenance schedule for these equipments means that costs are reduced, their operational efficiency and good quality of service rendered to society. It is worth remembering that the diagnoses used in the training and validation processes of the developed systems were obtained from the application of an international standard, which often does not fit the Brazilian reality. A future objective of this work is to employ the proposed diagnostic systems, taking as the desired outputs real diagnoses of lack, collected in the field.
dc.identifier.urihttps://hdl.handle.net/1843/BUBD-AMTJAT
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEngenharia elétrica
dc.subjectRedes neurais (Computação)
dc.subjectAutomação industrial
dc.subjectGases Analise
dc.subject.otherTransformador de potência
dc.subject.otherArco elétrico
dc.subject.otherRede neural artificial
dc.subject.otherControle do gás dissolvido em óleo
dc.subject.otherAnálise de gás
dc.titleDiagnóstico de falhas em transformadores de potência pela análise de gases dissolvidos em óleo isolante com a utilização de redes neurais
dc.typeMonografia de especialização
local.contributor.advisor-co1Frederico Gualberto Ferreira Coelho
local.contributor.advisor1Antonio de Padua Braga
local.description.resumoO principal objetivo deste trabalho é desenvolver um método utilizando redes neurais artificiais, para executar o mapeamento dos gases gerados no óleo isolante dos transformadores de potência, provenientes de faltas como arco elétrico, efeito corona, sobrecargas e dentre outros. Descreveremos também sobre os métodos de detecção de gases dissolvidos em óleo empregados atualmente. A vantagem de fazer uso de redes neurais em relação aos métodos existentes é devido o método ser totalmente numérico, bem adaptado ás modernas praticas de soluções computacionais, não necessitar de intervenções humanas especializadas e as analises são processadas rapidamente. Para o sistema proposto utilizamos uma rede neural Perceptron de múltiplas camadas, treinada pelo algoritmo de Levenberg-Marquardt, por ser um sistema não linear, os resultados obtidos foram comparados com os dos critérios de diagnósticos utilizados atualmente para óleo isolante chegando à conclusão que os sistemas propostos possuem alta precisão no diagnostico de faltas, atendendo todos os requisitos e expectativas. Do ponto de vista do planejamento da manutenção é verificado que um cronograma de manutenção bem definido para esses equipamentos significa redução de custos, eficiência operacional dos mesmos e boa qualidade aos serviços prestados para a sociedade. Vale lembrar que os diagnósticos utilizados nos processos de treinamento e validação dos sistemas desenvolvidos foram obtidos a partir da aplicação de norma internacional, a que muita das vezes não se adequá á realidade brasileira. Um objetivo futuro deste trabalho é empregar os sistemas de diagnostico propostos tomando-se como saídas desejadas diagnósticos reais de falta, colhidos em campo.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tcc__ronilson_lima___vers_o_final.pdf
Tamanho:
1.58 MB
Formato:
Adobe Portable Document Format