Raman evidence for pressure-induced formation of diamondene

dc.creatorLuiz Gustavo Pimenta Martins
dc.creatorMario Sergio de Carvalho Mazzoni
dc.creatorAntonio Gomes Souza Filho
dc.creatorLuiz Gustavo de Oliveira Lopes Cançado
dc.creatorMatheus Josué de Souza Matos
dc.creatorAlexandre Rocha Paschoal
dc.creatorPaulo de Tarso Cavalcante Freire
dc.creatorNadia Ferreira de Andrade Esmeraldo
dc.creatorAcrisio Lins de Aguiar
dc.creatorJing Kong
dc.creatorBernardo Ruegger Almeida Neves
dc.creatorAlan Barros de Oliveira
dc.date.accessioned2025-07-14T15:53:10Z
dc.date.accessioned2025-09-09T00:34:50Z
dc.date.available2025-07-14T15:53:10Z
dc.date.issued2017
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1038/s41467-017-00149-8
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1843/83542
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofNature Communications
dc.rightsAcesso Aberto
dc.subjectMétodo computacional
dc.subjectEspectroscopia de Raman
dc.subject.otherDiamondene
dc.subject.other2D materials
dc.subject.otherPressure-induced structural transition
dc.titleRaman evidence for pressure-induced formation of diamondene
dc.typeArtigo de periódico
local.citation.epage9
local.citation.spage1
local.citation.volume8
local.description.resumoDespite the advanced stage of diamond thin-film technology, with applications ranging from superconductivity to biosensing, the realization of a stable and atomically thick two-dimensional diamond material, named here as diamondene, is still forthcoming. Adding to the outstanding properties of its bulk and thin-film counterparts, diamondene is predicted to be a ferromagnetic semiconductor with spin polarized bands. Here, we provide spectroscopic evidence for the formation of diamondene by performing Raman spectroscopy of double-layer graphene under high pressure. The results are explained in terms of a breakdown in the Kohn anomaly associated with the finite size of the remaining graphene sites surrounded by the diamondene matrix. Ab initio calculations and molecular dynamics simulations are employed to clarify the mechanism of diamondene formation, which requires two or more layers of graphene subjected to high pressures in the presence of specific chemical groups such as hydroxyl groups or hydrogens.
local.identifier.orcidhttps://orcid.org/0000-0001-9777-7999
local.identifier.orcidhttps://orcid.org/0000-0001-5897-6936
local.identifier.orcidhttps://orcid.org/0000-0003-3802-1168
local.identifier.orcidhttps://orcid.org/0000-0003-0816-0888
local.identifier.orcidhttps://orcid.org/0000-0002-0398-3992
local.identifier.orcidhttps://orcid.org/0000-0002-2321-3709
local.identifier.orcidhttps://orcid.org/0000-0003-0470-1747
local.identifier.orcidhttp://orcid.org/0000-0003-1459-0972
local.identifier.orcidhttps://orcid.org/0000-0003-0464-4754
local.identifier.orcidhttps://orcid.org/0000-0002-6803-2223
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://www.nature.com/articles/s41467-017-00149-8#citeas

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Raman evidence for pressure-induced formation.pdf
Tamanho:
1.33 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: