Metodologias para determinação de periodicidade ótima de manutenção preventiva sob a suposição de reparo imperfeito em manutenção corretiva

dc.creatorRafael da Silva Fernandes
dc.date.accessioned2019-11-28T18:17:24Z
dc.date.accessioned2025-09-08T23:45:27Z
dc.date.available2019-11-28T18:17:24Z
dc.date.issued2019-10-04
dc.description.abstractReliability has played a key role in system development and consequently in increasing competition company. Thus, the appropriate choice of a model for a repairable system is critical to reducing expenses and related risks to failures. In general, an optimal maintenance policy is sought to reduce total cost maintenance. This work presents alternative methodologies for determination of optimal periodicity of Preventive Maintenance – PM under the assumption of Repair Imperfect – IR in Corrective Maintenance – CM. When a case study has more than a system under study, estimate the number of failures up to a certain downtime 𝑇 directly depends on the maintenance policy chosen. In addition, to estimate the expected time where a failure occurs can be done in different ways and generate different results too. In this work we use the model 𝐴𝑅𝐴1 – Arithmetic Reduction of Age memory 1, in addition to statistical methods such as maximum likelihood estimation and Monte Carlo simulationHere we propose three alternatives methodologies for obtaining the optimal periodicity: the first objective is to determine the point estimation by the cost function and the interval estimation by the source of variability of the Monte Carlo Simulation; the second aims to estimate the average function by the method proposed by Jack (1997), adapting it to 𝐴𝑅𝐴1; and the third methodology objective an estimation of failure times using the recursively estimated Mean Cumulative Function – MCF. Λ̂(𝑡). The practical situation studied in Toledo et al. (2016) is revisited, and the results obtained compared and analyzed. The proposed methodologies demonstrated alternative analysis situations regarding the behavior of the systems under study, directly impacting the decision making for choosing the optimal maintenance policy. The estimation of the optimal periodicity time as well as the determination of the expected failure times proved to be more consistent with the 𝐴𝑅𝐴1 arithmetic reduction model.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/31331
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEngenharia de produção
dc.subjectConfiabilidade (Engenharia) - Métodos Estatísticos –
dc.subjectManutenção e reparos
dc.subjectDecisão estatística
dc.subject.otherConfiabilidade
dc.subject.otherManutenção
dc.subject.otherReparo imperfeito
dc.subject.otherModelo de idade virtual
dc.subject.otherProcesso lei de potência
dc.subject.otherFunção intensidade
dc.subject.otherParada ótima
dc.titleMetodologias para determinação de periodicidade ótima de manutenção preventiva sob a suposição de reparo imperfeito em manutenção corretiva
dc.typeTese de doutorado
local.contributor.advisor1Marta Afonso Freitas
local.contributor.advisor1Latteshttp://lattes.cnpq.br/5604855163340174
local.contributor.referee1Enrico Antônio Colosimo
local.contributor.referee1Roberto da Costa Quinino
local.contributor.referee1Maria Luiza Guerra de Toledo
local.contributor.referee1Gustavo Leonel Gilardoni Avalle
local.creator.Latteshttp://lattes.cnpq.br/6555642806939107
local.description.resumoA confiabilidade tem desempenhado um papel fundamental no desenvolvimento de sistemas e, consequentemente, no aumento da competitividade da empresa. Assim, a escolha adequada de um modelo para um sistema reparável é fundamental para reduzir despesas e riscos relacionados às falhas. De um modo geral, busca-se uma política ótima de manutenção, no sentido de reduzir o custo total esperado da manutenção. Este trabalho apresenta metodologias alternativas para a determinação de periodicidade ótima de Manutenção Preventiva – MP sob a suposição de Reparo Imperfeito – RI em Manutenções Corretivas – MC. Quando um estudo de caso conta com mais de um sistema em estudo, estimar o número de falhas até um determinado tempo de parada T, depende diretamente da política de manutenção escolhida, ademais, estimar o tempo esperado em que ocorre uma falha pode ser feito de formas diferentes e gerar resultados também diferentes. Para isso, é preciso recorrer a modelos que possibilitem tais estimações e assim forneçam subsídios para tomada de decisões tais como a escolha da política de manutenção mais adequada. Neste trabalho utilizamos o modelo 𝐴𝑅𝐴1 – Arithmetic Reduction of Age de memória 1 além de métodos estatísticos tais como, estimação por máxima verossimilhança e simulação de Monte Carlo. Propomos aqui três metodologias alternativas para obtenção da periodicidade ótima: a primeira objetiva determinar a estimação pontual pela função custo e a estimação intervalar pela fonte de variabilidade da Simulação de Monte Carlo; a segunda visa a estimação da função média pelo método proposto por Jack (1997), adequando-o à classe de modelos 𝐴𝑅𝐴1; e a terceira visa apresentar uma estimação dos tempos de falhas utilizando a função média acumulada – 𝑀𝐶𝐹 estimada Λ̂(𝑡) de forma recursiva. A situação prática estudada em Toledo et al. (2016) é revisitada, sendo os resultados obtidos comparados e analisados. As metodologias propostas demonstraram situações de análises alternativas a respeito do comportamento dos sistemas em estudo, impactando diretamente na tomada de decisão para a escolha da política de manutenção ótima. A estimação do tempo de periodicidade ótima bem como a determinação dos tempos de falhas esperados demonstraram mais condizente com o modelo de redução aritmética 𝐴𝑅𝐴1.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA PRODUÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia de Produção

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Metodologias para Determinação de Periodicidade Ótima de Manutenção Preventiva - Versão Final.pdf
Tamanho:
1.15 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: