Early breast cancer detection using logistic regression models

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Resumo

.

Abstract

MicroRNAs (miRNAs) play a central role in gene expression and have remarkable abundance in body fluids. They are candidate diagnostics for a variety of conditions and diseases, including breast cancer. Their main objective is to identify miRNAs for the discrimination of cancer and their intrinsic molecular subtypes in order to recognize potential biomarkers.More and more linear algebra and statistics methods are used to address issues in gene expression literature. RNAseq technology is one of the extended use tool for overall analysis of miRNAs expression allowing simultaneus investigation of hundreds or thousands of miRNAs in a sample and is characterized by a low sample size and a large number of characteristics (miRNAs) that impair measures of similarity and classification performance. To avoid the problem of "curse dimensionality" many authors have carried out the selection of characteristics or reduced the size of data matrix. We present new predictive models to classify breast cancer tumor samples in early stage. The methodologies allowed correct classification of early stage breast cancer data set GSE58606 from NCBI with sensibility and specificity greater than 0.95. Also, as a sub-product of the methodology we are able to identify a set of biomarkers already known in others types of cancer

Assunto

Regressão logística, MicroRNAs, Bioinformática, Câncer

Palavras-chave

Logistic regression, MicroRNA, Breast cancer classification

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por