Inferência sobre erros de classificação de sistemas de medição com respostas do tipo atributo

dc.creatorRicardo Saldanha de Morais
dc.date.accessioned2019-08-12T22:53:14Z
dc.date.accessioned2025-09-09T01:10:57Z
dc.date.available2019-08-12T22:53:14Z
dc.date.issued2016-12-20
dc.identifier.urihttps://hdl.handle.net/1843/ICED-AQ22W2
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectTeoria das distribuições (Analise funcional)
dc.subjectMétodo de Monte Carlo
dc.subjectEstatística
dc.subjectAnálise de erros (Matemática)
dc.subjectEstatistica
dc.subjectVerossimilhança (Estatistica)
dc.subjectVerossimilhança (Estatística)
dc.subject.otherErros de classificação
dc.subject.otherAlgoritmo EM
dc.subject.otherResultados de maioria simples
dc.subject.otherSistemas de medição
dc.subject.otherSimulação de Monte Carlo
dc.subject.otherModelos de classe latente
dc.subject.otherMistura de distribuições multinomiais
dc.titleInferência sobre erros de classificação de sistemas de medição com respostas do tipo atributo
dc.typeTese de doutorado
local.contributor.advisor-co1Emilio Suyama
local.contributor.advisor1Roberto da Costa Quinino
local.contributor.referee1Emilio Suyama
local.contributor.referee1Frederico Rodrigues Borges da Cruz
local.contributor.referee1Luiz Henrique Duczmal
local.contributor.referee1Linda Lee Ho
local.contributor.referee1Fernando Luiz Pereira de Oliveira
local.description.resumoPara estimar os erros de classificação de sistemas de medição que classificam itens dicotomicamente com possibilidade de classificações repetidas, o método de máxima verossimilhança é comumente utilizado, principalmente em razão de sua eficiência em obter estimativas para os parâmetros de uma mistura de duas distribuições binomiais. Uma alternativa mais intuitiva e operacionalmente mais simples é dada pelo método de maioria simples. Nessa abordagem, cada item é classificado r vezes como conforme ou não-conforme. A classificação final do objeto é determinada pelo valor categórico mais frequente. Um estudo prévio indicou que os estimadores -- para as probabilidades dos erros de classificação de sistemas de medição com respostas dicotômicas -- baseados no procedimento de maioria simples possuem menor erro quadrático médio que os correspondentes estimadores de máxima verossimilhança, além de terem as mesmas propriedades assintóticas desses. Nesta tese, introduzimos uma variação do procedimento de maioria simples na qual a realização de um número fixo de r medições repetidas não é necessário para a definição da classificação final de uma unidade. Nessa nova abordagem, cada item é sequencialmente classificado como conforme ou não-conforme e processo cessa quando a frequência do resultado conforme ou do resultado não-conforme atinge um determinado valor inteiro. Mostramos que os estimadores baseados nesse procedimento são assintoticamente consistentes e não-enviesados. Além disso, por meio de simulação de Monte Carlo, verificamos que essa abordagem apresenta menor erro quadrático médio que os métodos de maioria simples (para um número médio de repetições similar a r) e de máxima verossimilhança. Entretanto, existem circunstâncias que requerem o emprego de sistemas de medição com respostas em uma escala mais ampla de valores categóricos nominais. Nesta tese, propomos também estimadores fundamentados em resultados de maioria simples para avaliar os erros de classificação de sistemas de medição que classificam objetos em um domínio nominal tricotômico. Modelamos o procedimento de maioria simples para o caso tricotômico usando uma mistura de três distribuições multinomiais. Demonstramos que esses estimadores são assintoticamente consistentes e não-enviesados, e comparamos seu desempenho com os correspondentes estimadores de máxima verossimilhança via simulação de Monte Carlo. Constatamos que os estimadores propostos são uma alternativa competitiva porque são computacionalmente mais simples e apresentam performance similar ao método de máxima verossimilhança. Esclarecemos que, nesta tese, estamos interessados no contexto em que o real estado de qualidade dos objetos não pode ser determinado.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tesericardomorais.pdf
Tamanho:
1.33 MB
Formato:
Adobe Portable Document Format