Multi-objective neural network model selection with a graph-based large margin approach

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This work presents a new decision-making strategy for multi-objective learning problem of artificial neural networks (ANN). The proposed decision-maker searches for the solution that minimizes a margin-based validation error amongst Pareto set solutions. The proposal is based on a geometric approximation to find the large margin (distance) of separation among the classes. Several benchmarks commonly available in the literature were used for testing. The obtained results showed that the proposal is more efficient in controlling the generalization capacity of neural models than other learning machines. It yields smooth (noise robustness) and well-fitted models straightforwardly, i.e., without the necessity of parameter set definition in advance or validation data use, as often required by learning machines.

Abstract

Assunto

Redes neurais (Computação)

Palavras-chave

Classification, Decision-making, Artificial neural networks, Multi-objective decision learning

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S0020025522002195

Avaliação

Revisão

Suplementado Por

Referenciado Por