Random walk on the simple symmetric exclusion process
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Passeio aleatório no processo de exclusão simétrica simples
Primeiro orientador
Membros da banca
Resumo
We investigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium, in dimension one. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole, so that its asymptotic behavior is expected to depend on the density ρ ∈ [0, 1] of the underlying SSEP. Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ−, ρ+ ∈ [0, 1]. The asymptotic speed we obtain in our LLN is a monotone function of ρ. Also, ρ− and ρ+ are characterized as the two points at which the speed may jump to (or from) zero. Furthermore, for all the values of densities where the random walk experiences a non-zero speed, we can prove that it satisfies a functional central limit theorem (CLT). For the special case in which the density is 1/2 and the jump distribution on an empty site and on an occupied site are symmetric to each other, we prove a LLN with zero limiting speed. We also prove similar LLN and CLT results for a different environment, given by a family of independent simple symmetric random walks in equilibrium.
Abstract
Investigamos o comportamento de longo prazo de um caminhante aleatório evoluindo sobre o processo de exclusão simétrica simples (SSEP) em equilíbrio, na dimensão um. A cada salto, o caminhante aleatório está sujeito a uma deriva que depende se ele está sentado em cima de uma partícula ou de um buraco, de modo que se espera que seu comportamento assintótico dependa da densidade ρ ∈ [0, 1] do objeto subjacente. SSEP. Nosso primeiro resultado é uma lei dos grandes números (LLN) para o caminhante aleatório para todas as densidades ρ exceto para no máximo dois valores ρ−, ρ+ ∈ [0, 1]. A velocidade assintótica que obtemos em nosso LLN é uma função monótona de ρ. Além disso, ρ− e ρ+ são caracterizados como os dois pontos nos quais a velocidade pode saltar para (ou de) zero. Além disso, para todos os valores de densidades em que o passeio aleatório experimenta uma velocidade diferente de zero, podemos provar que ele satisfaz um teorema do limite central funcional (CLT). Para o caso especial em que a densidade é 1/2 e a distribuição de salto em um local vazio e em um local ocupado são simétricas entre si, provamos um LLN com velocidade limite zero. Também provamos resultados semelhantes de LLN e CLT para um ambiente diferente, dados por uma família de caminhadas aleatórias simétricas simples independentes em equilíbrio.
Assunto
Probabilidades, Matemática, Passeio aleatório (Matemática), Lei dos grandes números, Teorema central do limite
Palavras-chave
Random walk, Simple symmetric exclusion process, Law of large numbers, Functional central limit theorem
Citação
Departamento
Curso
Endereço externo
https://link.springer.com/article/10.1007/s00220-020-03833-x