Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression

dc.creatorPaula Patrícia Oliveira da Silva
dc.creatorFrankley Gustavo Fernandes Mesquita
dc.creatorGuilherme Barbosa Vilela
dc.creatorRodinei Facco Pegoraro
dc.creatorVictor Martins Maia
dc.creatorMarcos Koiti Kondo
dc.date.accessioned2023-12-04T16:45:03Z
dc.date.accessioned2025-09-09T01:01:18Z
dc.date.available2023-12-04T16:45:03Z
dc.date.issued2022-08-06
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipOutra Agência
dc.identifier.doihttps://doi.org/10.14295/cs.v13.3719
dc.identifier.issn2177-5133
dc.identifier.urihttps://hdl.handle.net/1843/61681
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofComunicata Scientiae
dc.rightsAcesso Aberto
dc.subjectFrutas - Cultivo
dc.subjectAbacaxi
dc.subjectInteligência artificial
dc.subjectRedes neurais (Computação)
dc.subjectLógica difusa
dc.subject.otherAgriculture 4.0
dc.subject.otherAnanas comosus var. comosus
dc.subject.otherArtificial intelligence
dc.subject.otherFruit growing
dc.titleVitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression
dc.typeArtigo de periódico
local.citation.spagee3719
local.citation.volume13
local.description.resumoHybrid intelligent systems that combine artificial intelligence techniques, such as neural networks and fuzzy logic, have become common for the development of complex models to predict and estimate variable parameters. The objective of this study was to compare predictions of Vitoria pineapple yields by Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) and linear or quadratic regression models. The prediction models developed calculate the fruit fresh weight based on the D leaf fresh weight (DLFW) and stem diameter (SD), measured at the time of floral induction. ANFIS were developed using the genfisOptions function of the Neuro Fuzzy Designer toolbox of the Matlab program (Mathworks®- Neuro Fuzzy Designer, R2018a), considering DLFW and SD as the entry parameters, single and combined. The yield prediction error was calculated using the root mean square error (RMSE). The RMSE found for all ANFIS developed were lower than that predicted by linear or quadratic regression models. The lowest RMSE was obtained when the parameters DLFW and SD were combined for the development of the ANFIS. Therefore, the results showed that the use of neuro-fuzzy modeling (ANFIS) for predicting Vitoria pineapple yield presents better results than the use of linear or quadratic regression models.
local.publisher.countryBrasil
local.publisher.departmentICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
local.publisher.initialsUFMG
local.url.externahttps://www.comunicatascientiae.com.br/comunicata/article/view/3719

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression.pdf
Tamanho:
701.46 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: