Fast and robust optimization approaches for pedestrian detection

dc.creatorVictor Hugo Cunha de Melo
dc.date.accessioned2019-08-13T04:12:50Z
dc.date.accessioned2025-09-08T23:05:31Z
dc.date.available2019-08-13T04:12:50Z
dc.date.issued2014-02-25
dc.description.abstractThe large number of surveillance cameras available nowadays in strategic points of major cities provides a safe environment. However, the huge amount of data provided by the cameras prevents its manual processing, requiring the application of automated methods. Among such methods, pedestrian detection plays an important role in reducing the amount of data by locating only the regions of interest for further processing regarding activities being performed by agents in the scene. However, the currently available methods are unable to process such large amount of data in real time. Therefore, there is a need for the development of optimization techniques. Towards accomplishing the goal of reducing costs for pedestrian detection, we propose in this work two optimization approaches. The first approach consists of a cascade of rejection based on Partial Least Squares (PLS) combined with the propagation of latent variables through the stages. Our results show that the method reduces the computational cost by increasing the number of rejected background samples in earlier stages of the cascade. Our second approach proposes a novel optimization that performs a random filtering in the image to select a small number of detection windows, allowing a reduction in the computational cost. Our results show that accurate results can be achieved even when a large number of detection windows are discarded.
dc.identifier.urihttps://hdl.handle.net/1843/ESBF-9P9GPR
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectVisão por computador
dc.subjectComputação
dc.subject.otherPartial Least Squares
dc.subject.otherDetecção de pedestres
dc.subject.otherCascata de rejeição
dc.subject.otherVariable Importance on projection
dc.subject.otherFiltragem aleatória
dc.subject.otherVisão computacional
dc.titleFast and robust optimization approaches for pedestrian detection
dc.typeDissertação de mestrado
local.contributor.advisor-co1David Menotti Gomes
local.contributor.advisor1William Robson Schwartz
local.contributor.referee1David Menotti Gomes
local.contributor.referee1Claudio Risoto Jung
local.contributor.referee1Mario Fernando Montenegro Campos
local.contributor.referee1Jefersson Alex dos Santos
local.description.resumoO grande número de câmeras de vigilância disponíveis hoje em dia em pontos estratégicos das principais cidades fornece um ambiente seguro. No entanto, a enorme quantidade de dados geradas por estas câmeras impede o processamento manual, exigindo a aplicação de métodos automatizados. Entre estes métodos, a detecção de pedestres desempenha um papel importante na redução da quantidade de dados por localizar apenas as regiões de interesse para o tratamento posterior sobre as atividades a serem realizadas pelos agentes na cena. No entanto, os métodos de detecção de pedestres disponíveis atualmente são incapazes de processar tal quantidade de dados em tempo real. Portanto, é necessário utilizar técnicas de otimização para permitir a detecção em tempo real, mesmo quando grandes volumes de dados têm de ser processados. Para cumprir a meta de redução de custos para a detecção de pedestres, este trabalho propõe duas abordagens de otimização. A primeira abordagem consiste em uma cascata de rejeição baseada no método Partial Least Squares (PLS) e no método de Variable Importance in Projection (VIP), combinada com a propagação de variáveis latentes através dos estágios. Os resultados mostram que o método reduz o custo computacional, aumentando o número de amostras pertencentes ao fundo rejeitadas nos estágios iniciais da cascata. A segunda abordagem consiste em uma otimização baseada em uma filtragem aleatória na imagem para descartar um grande número de janelas de detecção rapidamente, permitindo uma redução do custo computacional. A avaliação experimental demonstra que pode ser obtido uma grande acurácia, mesmo quando um grande número de janelas de detecção é descartado.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
victorhugocunha.pdf
Tamanho:
8.58 MB
Formato:
Adobe Portable Document Format