A semi-Lagrangian approach for the minimal exposure path problem in wireless sensor networks

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

A critical metric of the coverage quality in Wireless Sensor Networks (WSNs) is the Minimal Exposure Path (MEP), a path through the environment that least exposes a mobile target to the sensor nodes detection. Many approaches have been proposed in the last decades to solve this optimization problem, ranging from classic grid-based and Voronoi-based planners to meta-heuristics. However, most of them are limited to specific sensing models and obstacle-free spaces. Still, none of them guarantee an optimal solution, and the state-of-the-art is expensive in terms of execution time. Therefore, in this paper, we propose a novel method, called SL-MEP, that models the MEP as an optimal control problem and solves it by using a semi-Lagrangian (SL) scheme. This framework is shown to converge to the optimal MEP while it incorporates different homogeneous and heterogeneous sensor models and geometric constraints (obstacles). Experiments show that our method dominates the state-of-the-art, improving the results by approximately 10% with a relatively lower execution time.

Abstract

Assunto

Eletrônica de potência

Palavras-chave

Wireless Sensor Network (WSN), Minimal Exposure Path (MEP), Policy iteration, Dynamic programming

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S1570870522000427

Avaliação

Revisão

Suplementado Por

Referenciado Por