Spatial extreme learning machines: an application on prediction of disease counts

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Extreme learning machines have gained a lot of attention by the machine learning community because of its interesting properties and computational advantages. With the increase in collection of information nowadays, many sources of data have missing information making statistical analysis harder or unfeasible. In this paper, we present a new model, coined spatial extreme learning machine, that combine spatial modeling with extreme learning machines keeping the nice properties of both methodologies and making it very flexible and robust. As explained throughout the text, the spatial extreme learning machines have many advantages in comparison with the traditional extreme learning machines. By a simulation study and a real data analysis we present how the spatial extreme learning machine can be used to improve imputation of missing data and uncertainty prediction estimation

Abstract

As máquinas de aprendizado extremo têm recebido muita atenção da comunidade de aprendizado de máquina por causa de suas propriedades interessantes e vantagens computacionais. Com o aumento da coleta de informações nos dias de hoje, muitas fontes de dados apresentam falta de informações, tornando a análise estatística mais difícil ou inviável. Neste artigo, apresentamos um novo modelo, cunhado de máquina de aprendizado extremo espacial, que combina modelagem espacial com máquinas de aprendizado extremo mantendo as boas propriedades de ambas as metodologias e tornando-o muito flexível e robusto. Conforme explicado ao longo do texto, as máquinas de aprendizado extremo espacial têm muitas vantagens em comparação com as máquinas de aprendizado extremo tradicionais. Por meio de um estudo de simulação e uma análise de dados reais, apresentamos como a máquina de aprendizado extremo espacial pode ser usada para melhorar a imputação de dados perdidos e a estimativa de previsão de incerteza

Assunto

Aprendizado do computador, Teoria bayesiana de decisão estatistica., Análise espacial (Estatística), Ausencia de dados (Estatistica)

Palavras-chave

Extreme Learning Machines, Bayesian method, Integrated nested Laplace approximation, Missing data, Spatial modeling

Citação

Curso

Endereço externo

https://pubmed.ncbi.nlm.nih.gov/29629629/

Avaliação

Revisão

Suplementado Por

Referenciado Por