Subcanonical curves: on the loci of odd Weierstrass semigroups and the dimension of the loci for certain families of semigroups

dc.creatorAislan Leal Fontes
dc.date.accessioned2019-08-14T16:50:54Z
dc.date.accessioned2025-09-09T00:38:21Z
dc.date.available2019-08-14T16:50:54Z
dc.date.issued2017-09-15
dc.description.abstractA celebrated result of KontsevichZorich ensures that the moduli space (...) of pointed curves of genus g whose marked point is subcanonical has three irreducible components. In this work we present an explicit method to construct a compactification of the loci which corresponds to a general point of an irreducible component of (...), namely the loci of pointed curves whose symmetric Weierstrass semigroup is odd. The construction is an extension of Stoehrs techniques using equivariant deformation of monomial curves given by Pinkham by exploring syzygies. As an application we prove the rationality of the loci for genus six. Byfixing a family of semigroups of multiplicity 6, we also compute the dimension of the moduli space of pointed curve whose Weierstrass semigroup at the marked point belogns to the fixed family.
dc.identifier.urihttps://hdl.handle.net/1843/EABA-ARMLGG
dc.languageInglês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.subjectCurvas algébricas
dc.subjectWeierstrass, pontos de
dc.subject.otherDeformation
dc.subject.otherSyzygy
dc.subject.otherWeierstrass point
dc.subject.otherModuli space
dc.subject.otherSymmetric semigroup
dc.titleSubcanonical curves: on the loci of odd Weierstrass semigroups and the dimension of the loci for certain families of semigroups
dc.typeTese de doutorado
local.contributor.advisor1Andre Luis Contiero
local.contributor.referee1Alex Correa Abreu
local.contributor.referee1Marco Pacini
local.contributor.referee1Marco Boggi
local.contributor.referee1Mauricio Barros Correa Junior
local.contributor.referee1Renato Vidal da Silva Martins
local.description.resumox
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_aislan.pdf
Tamanho:
682.77 KB
Formato:
Adobe Portable Document Format