A Bayesian skew mixture item response model

dc.creatorJuliane Venturelli Silva Lima
dc.date.accessioned2019-08-13T09:50:10Z
dc.date.accessioned2025-09-08T22:51:12Z
dc.date.available2019-08-13T09:50:10Z
dc.date.issued2015-03-02
dc.description.abstractUnder the Item Response Theory, the two most common link functions used to model dichotomous data are the symmetric probit and logit. However, some authors have emphasized that these symmetric links do not always provide the best t for some data sets. To overcome this issue, asymmetric links have been proposed. This work aims at introducing a exible Item Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a centered skew normal distribution is assumed as the link function and, additionally, we consider a nite mixture of Beta distributions and a point mass distribution at zero to describe the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models in one also performing an intrinsic model selection. We o er the full condition distribution of ability, discrimination and dificulty parameters. We also introduce efficient algorithms to sample from the posterior distributions.
dc.identifier.urihttps://hdl.handle.net/1843/ICED-9WFGSE
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEstatística
dc.subjectTeoria bayesiana de decisão estatistica
dc.subjectProbabilidades
dc.subject.otherEstatística
dc.titleA Bayesian skew mixture item response model
dc.typeDissertação de mestrado
local.contributor.advisor-co1Rosangela Helena Loschi
local.contributor.advisor1Flavio Bambirra Goncalves
local.contributor.referee1Flavio Bambirra Goncalves
local.contributor.referee1Glaura da Conceicao Franco
local.contributor.referee1Tufi Machado Soares
local.description.resumo.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
disserta__o_juliane_venturelli.pdf
Tamanho:
1.08 MB
Formato:
Adobe Portable Document Format