Machine learning predictions of positron binding to molecules

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Machine-learning techniques are used to check the theoretical and experimental predictions of positron binding to general molecules. The bound or unbound character of previous calculations for polar molecules are mostly confirmed. Binding for so far unexplored polar molecules is predicted. For apolar molecules, a formula for the binding energy in terms of isotropic polarizability and ionization potential is obtained, leading to unprecedented agreement with experiments as well as prediction of previously unidentified bound systems. The role of the ionization potential is suggested as a consequence of enhanced formation of virtual positronium at short distances.

Abstract

Assunto

Elétrons

Palavras-chave

Machine learning, Positron complexes, Ionization potential

Citação

Curso

Endereço externo

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.052808

Avaliação

Revisão

Suplementado Por

Referenciado Por