Dois resultados em bilhares em superfícies com curvatura constante
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Javier Alexis Correa Mayobre
José Barbosa Gomes
Karina Daniela Marin
Luciano Coutinho dos Santos
Rafael Ramirez-Ros
José Barbosa Gomes
Karina Daniela Marin
Luciano Coutinho dos Santos
Rafael Ramirez-Ros
Resumo
Neste trabalho estendemos alguns resultados sobre bilhares planos ao plano hiperbólico e a um hemisfério da esfera. Na primeira parte consideramos o bilhar definido na região delimitada por uma curva fechada e geodesicamente estritamente convexa. Estudando a entropia polinomial desses bilhares provamos que a aplicação do bilhar circular tem entropia polinomial igual a 1, enquanto que os outros bilhares têm entropia polinomial >=2. Em particular, provamos que o bilhar elíptico e não circular tem entropia polinomial igual a 2. As principais ferramentas utilizadas foram a integrabilidade dos bilhares circulares e elípticos em superfícies com curvatura constante, a propriedade Twist destes bilhares e uma generalização das técnicas aplicadas por Marco [27] para calcular entropia polinomial. Na segunda parte do trabalho, consideramos bilhares em mesas tipo estádios focalizadores e mostramos que, quando as partes focalizadoras são ligadas por segmentos geodésicos suficientemente longos, a aplicação de bilhar tem expoente de Lyapunov positivo em quase todo ponto. As principais ferramentas utilizadas foram uma versão do Teorema de Wojtkowski [40] do método dos campos de cones e uma generalização da construção dos campos de cones apresentadas por Donnay [14]. Finalizamos esta parte estudando o bilhar no estádio circular no plano hiperbólico.
Abstract
In this work we extend some results about plane billiards to the hyperbolic plane and to ahemisphere of the sphere. First we consider billiards defined in the region bounded by a closed and geodesically strictly convex curve. Studying the polynomial entropy of these billiards we prove that the circular billiard map has polynomial entropy equal to 1, while other billiards have polynomial entropy >=2. In particular, we prove that the elliptical billiard has polynomial entropy equal to 2. The main tools used were the integrability of circular and elliptical billiards on surfaces with constant curvature, the Twist property of those billiard maps and a generalization of the techniques applied by Marco [27] to calculate polynomial entropy.
In the second part of the work, we consider stadium-like billiard tables and show that, when the focusing parts are connected by sufficiently long geodesic segments, the billiard map has a positive Lyapunov exponent almost everywhere. The main tools used were a Wojtkowski's version [40] of the cone field method and a generalization of the construction of the cone fields presented by Donnay [14]. We finish this part by studying the circular stadium billiard in the hyperbolic plane.
Assunto
Matemática – Teses, Superficies de curvatura constante – Teses, Liapunov, Funções de – Teses.
Palavras-chave
bilhares convexos, superfícies com curvatura constante, expoente de Lyapunov, entropia polinomial