Meridional circulation dynamics in a cyclic convective dynamo

dc.creatorDário Manuel da Conceição Passos
dc.creatorMark Miesch
dc.creatorGustavo Andres Guerrero Eraso
dc.creatorPaul Charbonneau
dc.date.accessioned2023-11-13T15:36:49Z
dc.date.accessioned2025-09-08T22:59:23Z
dc.date.available2023-11-13T15:36:49Z
dc.date.issued2017
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201730568
dc.identifier.issn1432-0746
dc.identifier.urihttps://hdl.handle.net/1843/60865
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofAstronomy & Astrophysics
dc.rightsAcesso Aberto
dc.subjectSol
dc.subjectCiclo solar
dc.subjectCampos magnéticos
dc.subject.otherDynamo
dc.subject.otherMagnetohydrodynamics
dc.subject.otherSun
dc.subject.otherMagnetic fields
dc.titleMeridional circulation dynamics in a cyclic convective dynamo
dc.typeArtigo de periódico
local.citation.epage19
local.citation.spage1
local.citation.volume607
local.description.resumoSurface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to slowing down the axisymmetric poleward horizontal component. The behavior of this large-scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large-scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid-latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.
local.identifier.orcidhttps://orcid.org/0000-0002-5345-5119
local.identifier.orcidhttps://orcid.org/0000-0003-1976-0811
local.identifier.orcidhttps://orcid.org/0000-0002-2671-8796
local.identifier.orcidhttps://orcid.org/0000-0003-1618-3924
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://www.aanda.org/articles/aa/full_html/2017/11/aa30568-17/aa30568-17.html

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Meridional circulation dynamics.pdf
Tamanho:
3.06 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
978 B
Formato:
Plain Text
Descrição: