A novel fault prognostic approach based on particle filters and differential evolution

dc.creatorLuciana Balieiro Cosme
dc.creatorMarcos Flávio Silveira Vasconcelos D'Angelo
dc.creatorWalmir Matos Caminhas
dc.creatorShen Yin
dc.creatorReinaldo Martinez Palhares
dc.date.accessioned2025-04-24T18:45:40Z
dc.date.accessioned2025-09-09T00:41:16Z
dc.date.available2025-04-24T18:45:40Z
dc.date.issued2018
dc.identifier.doihttps://doi.org/10.1007/s10489-017-1013-1
dc.identifier.issn0924-669X
dc.identifier.urihttps://hdl.handle.net/1843/81826
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofApplied intelligence
dc.rightsAcesso Restrito
dc.subjectCiência da Computação
dc.subjectEngenharia Mecânica
dc.subject.otherControle
dc.subject.otherControle de Processos
dc.subject.otherPrognóstico de Falhas
dc.subject.otherDetecção de Falhas
dc.subject.otherDiagnóstico de Falhas
dc.subject.otherInteligência Computacional
dc.titleA novel fault prognostic approach based on particle filters and differential evolution
dc.typeArtigo de periódico
local.citation.epage853
local.citation.issue4
local.citation.spage834
local.citation.volume48
local.description.resumoThis paper proposes an improved fault prognostic approach based on a modified particle filter with a built-in differential evolution characteristic. The main methodological contribution of this study is to handle the problem of sample impoverishment faced by particle filters when only a few particles are resampled. This is done by incorporating modified mutation and selection operators for differential evolution into the proposed particle filter. The proposed method is performed to deal with two real applications of condition monitoring and fault prognosis, namely an accelerated degradation of bearings under operating conditions from the platform PRONOSTIA and a high-speed computer numerical control (CNC) milling machine 3-flute cutters.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://link.springer.com/article/10.1007/s10489-017-1013-1

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: