Distributed event-triggered fuzzy control for nonlinear interconnected systems

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This paper deals with the asynchronous distributed event-triggered control of continuous-time nonlinear interconnected systems. The nonlinear dynamics of the subsystems are represented by Takagi–Sugeno fuzzy models via the sector nonlinearity approach. Moreover, the nonlinear interconnections among the subsystems are assumed to be known and sector-bounded. In the event-triggered control setup, where the state information is asynchronously available to the local controllers only in specific time instants, it is necessary to deal with the asynchronous premise variables because they introduce extra difficulties to derive suitable co-design conditions. To deal with this issue, we propose a new triggering strategy such that the local event-triggering mechanisms (ETMs) counteract the effects of asynchronous premise variables. With this new distributed ETM, a co-design condition is proposed, and the existence of a strictly positive minimum inter-event time is proved to exclude Zeno behaviour. Moreover, a multi-objective optimization procedure is introduced to enlarge the estimate of the domain of attraction of the closed-loop equilibrium and minimize the number of transmissions provided by the ETMs. Finally, the approach is validated through the synchronization of interconnected oscillators.

Abstract

Assunto

Sistemas difusos, Sistemas não lineares

Palavras-chave

Distributed nonlinear control, Control of interconnected systems, Event-based control, Takagi–Sugeno fuzzy model, Networked control systems, Nonlinear systems

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S0960077923011785

Avaliação

Revisão

Suplementado Por

Referenciado Por