Personalização de conforto em ambientes inteligentes por transferência de conhecimento em aprendizado profundo
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Personalization of comfort in smart environments by knowledge transfer in deep learning
Primeiro orientador
Membros da banca
Jose Marcos Silva Nogueira
Luiz Henrique Andrade Correia
Alex Borges Vieira
Luiz Henrique Andrade Correia
Alex Borges Vieira
Resumo
A predição de conforto personalizado em ambientes inteligentes pode ser muito benéfica para seus usuários. A exemplo, escritórios inteligentes personalizados podem proporcionar um maior bem-estar e maior desempenho laboral ao otimizar a sensação de conforto dos usuários. No entanto, para a geração de modelos de predição de conforto, algoritmos de aprendizado de máquina tradicionais requerem uma quantidade de dados rotulados cara em termos de tempo e recursos. Ambientes inteligentes normalmente geram uma quantidade baixa de dados em um período aceitável de tempo, e este problema se agrava com a personalização do conforto.
Esta requer coleta consciente de dados individuais do usuário, esbarrando em problemas de indisponibilidade e assiduidade do usuário em fornecer os dados solicitados. A nossa proposta aplica a transferência de conhecimento com ajuste fino para reduzir o tempo de aprendizado de um ambiente inteligente personalizado. Essa técnica permite que modelos pré-treinados em outras tarefas transfiram o conhecimento obtido para uma nova tarefa. Os resultados mostraram que a transferência de conhecimento melhora o desempenho inicial de um modelo em comparação com o treinamento sem a transferência de conhecimento. Os resultados mostraram uma melhoria na acurácia em relação aos modelos sem transferência de conhecimento. A melhoria variou de 2,24% a 14,82%, sendo a melhoria média de 7,93% em todas as combinações de usuários alvo e fonte.
Abstract
Predicting personalized comfort in smart environments can be very beneficial for its users. For example, personalized smart offices can improve the well-being and work performance by optimizing the users' sense of comfort. However, in order to generate comfort prediction models, traditional machine learning algorithms require an amount of labeled data that is expensive in terms of time and financial resources. Smart environments typically generate a low amount of data in an acceptable period of time, and this problem becomes worse with the personalization of comfort. Personalization requires the collection of individual user data, facing problems of user availability and willingness to provide the requested data. Our proposal applies knowledge transfer with fine-tuning to reduce the learning time of a personalized intelligent environment. This technique allows models pre-trained on other tasks to transfer the knowledge obtained to a new task. Our evaluation we performed with three different data sets. The results showed that knowledge transfer improves the performance of a model when compared to training without knowledge transfer. The improvement ranged from 2.24% to 14.82%, with the average improvement being 7.93% across all combinations of target and source users.
Assunto
Computação – Teses, Aprendizado do computador – Teses, Redes neurais (Computação) – Teses, Algoritmos de predição – Teses, Transferência do conhecimento – Teses
Palavras-chave
Conforto Personalizado, Ambientes Inteligentes, Aprendizado de Máquina, Redes Neurais Artificiais, Algoritmo de Predição, Transferência de conhecimento, Ajuste Fino
Citação
Departamento
Endereço externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
