Ações Anosov de contato uniformemente quaseconformes

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Ali Tahzibi
Carlos Maria Carballo
Edivaldo Lopes dos Santos
Pablo Daniel Carrasco Correa

Resumo

Neste trabalho obtemos resultados de rigidez para ações Anosov de R^k visando obter respostas positivas na direção da Conjectura de Katok-Spatzier: Toda ação Anosov suave e irredutível de Z^k ou R^k (k ≥ 2) é C∞-conjugada a uma ação algébrica. Mais precisamente, nosso resultado principal (Teorema A) afirma que “toda ação Anosov de k-contato generalizada e uniformemente u-quaseconforme numa variedade fechada de dimensão 2n + k (n ≥ 2) é C∞-conjugada a uma ação Anosov quasealgébrica”. Esse resultado generaliza um resultado obtido por Sadovskaya [46] para fluxos de Anosov. Para mostrarmos este teorema, dois resultados fundamentais se destacam, no primeiro (Teorema B) mostramos que uma ação Anosov irredutível e uniformemente u-quaseconforme é u-conforme em relação a uma métrica Riemanniana (Hölder contínua e suave em folhas fortes) no fibrado forte instável. Finalmente, no segundo resultado (Teorema C) mostramos que ações Anosov de k-contato generalizadas e uniformemente u-quaseconformes possuem folheaçãoo forte instável e folheação forte estável suaves.

Abstract

In this work we obtain rigidity results for Rk Anosov actions in order to obtain positive answers in the direction of the Katok-Spatzier Conjecture: Every irreducible smooth Anosov action of R k or Z k (k g 2) is C ∞-conjugated to an algebraic action. More precisely, our main result (Theorem A) states that “all uniformly u-quasiconformal Anosov action associated with a generalized k-contact struture in a closed (2n + k)-manifold (n g 2) is C ∞-conjugated to a quasi-algebraic Anosov action”. This generalizes a result obtained by Sadovskaya [46] for Anosov flows. To prove this theorem, two fundamental results stand out, in the first one (Theorem B) we prove that an irreducible and uniformly uquasiconformal Anosov action is u-conformal with respect to a Riemannian metric (H¨older continuous and smooth on strong leaves) in the strong unstable distribution. Finally, in the second (Theorem C) we prove that uniformly u-quasiconformal Anosov actions associated with a generalized k-contact struture have smooth strong unstable foliation and strong stable foliation.

Assunto

Matemática – Teses, Folheações hiperbólicas – Teses, Ações Anosov – Teses, Sistemas Dinâmicos – Teses

Palavras-chave

Ações Anosov, u-quaseconforme, u-conforme, k-contato, Folheação, Irredutível

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por