Comportamento assintótico de soluções de alguns problemas elípticos em espaços de Orlicz-Sobolev

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Olimpio Hiroshi Miyagaki
Luiz Fernando de Oliveira Faria
Ronaldo Brasileiro Assunção
Hamilton Prado Bueno

Resumo

Seja Ω um domínio limitado e suave de RN e, para cada n ∈ N, seja Φn uma N-função da forma Φ n(t) = Z0t sφn(s) ds em que φn : R → R é uma função par satisfazendo propriedades adicionais. Na primeira parte deste trabalho estudamos o comportamento assintótico, quando n → ∞, de un ∈ W01,Φn(Ω), solução de um problema singular da forma 8>><>>: −∆Φnu = Λn f(x) uα em Ω, u > 0 em Ω, u = 0 sobre ∂Ω, (1) em que 0 ≤ α ≤ 1, f é uma função não negativa, não trivial em L1(Ω), e Λn é uma constante positiva. No Capítulo 1, mostramos que o problema singular (1) tem uma única solução fraca un ∈ W 1,Φn 0 (Ω) no caso em que Λn = 1 e 0 ≤ α ≤ 1. No Capítulo 2, exploramos o fato de que un é o minimizador global do funcional energia Jn (u) := ZΩ Φn(|∇u|) dx − ZΩ f (uun)α dx, un ∈ W01,Φn(Ω), para provar que lim n→∞ un = d uniformemente em Ω, em que d denota a função distância até a fonteira ∂Ω. No Capítulo 3, provamos que, para 0 ≤ α < 1, o funcional modular t 7→ ZΩ Φn(|∇u|) dx, sob a restrição ZΩ f|u|1−α dx = 1, admite um minimizador positivo un ∈ W01,Φn(Ω) que é solução fraca de (1) com Λn = ZΩ φn(|∇un|)|∇un|2 dx. Além disso, provamos que lim n→∞ un = ε−1d uniformemente em Ω, em que ε = ZΩ fd1−α dx, e também que lim n→∞ (Λn)n1 = lim n→∞ ZΩ Φn(|∇un|) dx 1n = γ1(ε), em que a função γ1 : [0, ∞) → [0, ∞) é deinida por γ1(t) := lim n→∞ (φ0n(t)) 1n , se t > 0, e γ1(0) = 0. Para provar esses resultados de convergência mostramos que: γ1 é contínua, estritamente crescente e sobrejetiva; as sequências (Λn)n1 e ZΩ Φn(|∇un|) dx 1n convergem para o mesmo número positivo Λ∞; e un converge uniformemente para uma função u∞ ∈ C0(Ω) ∩ W1,∞(Ω) que é solução de viscosidade da equação min{−∆∞u, γ1(|∇u|) − Λ∞} = 0. Então, concluímos que Λ∞ = γ1(ε) e u∞ = ε−1d. Na segunda parte deste trabalho, desenvolvida no Capítulo 4, estudamos o comportamento assintótico dos minimizadores do quociente do tipo Rayleigh k∇ kvvkkΨΦjl , em que (Φl) e (Ψj) são sequências de N-funções. Provamos que, a menos de subsequências, o minimizador de k∇·k k·kΨΦjl converge, quando j → ∞, para o minimizador de k∇·k k·k∞Φl , o qual, por sua vez, converge, quando l → ∞, para o minimizador w∞ do quociente tipo Rayleigh k∇·k k·k∞∞ . Além disso, mostramos que w∞ é a solução de viscosidade

Abstract

Let Ω be a bounded, smooth domain of R N and, for each n ∈ N, let Φn be an Nfunction of the form Φn(t) = Z t 0 sφn(s) ds where φn : R → R is an even function satisfying additional properties. In the first part of this work we study the asymptotic behavior, as n → ∞, of un ∈ W 1,Φn 0 (Ω), solution of a singular problem    −∆Φn u = Λn f(x) u α in Ω, u > 0 in Ω, u = 0 on ∂Ω, (2) where 0 ≤ α ≤ 1, f is a nonnegative, nontrivial function in L 1 (Ω) and Λn is a positive constant. In Chapter 1, we prove that, if Λn = 1, then problem (2) has a unique weak solution un ∈ W 1,Φn 0 (Ω), for any 0 ≤ α ≤ 1. In Chapter 2 we show that un is the global minimizer of the energy functional Jn(u) := Z Ω Φn(|∇u|) dx − Z Ω f u (un) α dx, un ∈ W 1,Φn 0 (Ω), and exploit this fact to prove that limn→∞ un = d uniformly in Ω, where d denotes the distance function to the boundary ∂Ω. In Chapter 3 we consider the modular functional t 7→ Z Ω Φn(|∇u|) dx, under the constraint Z Ω f|u| 1−α dx = 1. In the case 0 ≤ α < 1, we prove that it admits a positive minimizer un ∈ W 1,Φn 0 (Ω) which solves (2) with Λn = Z Ω φn(|∇un|)|∇un| 2 dx. Moreover, we prove that limn→∞ un = ε −1d, uniformly in Ω, where ε = R Ω f d1−α dx. Furthermore, we also show that limn→∞ (Λn) 1 n = limn→∞ Z Ω Φn(|∇un|) dx 1 n = γ1(ε), where the function γ1 : [0, ∞) → [0,∞) is defined by γ1(t) := limn→∞ (φ 0 n (t)) 1 n , if t > 0, and γ1(0) = 0. v In order to prove these convergences, we show that γ1 is continuous, strictly increasing and onto. We also consider the sequences (Λn) 1 n and Z Ω Φn(|∇un|) dx 1 n and prove that they both converge to a positive number Λ∞. Considering the sequence of solutions un, we prove that it converges uniformly to a function u∞ ∈ C0(Ω) ∩ W1,∞(Ω), which solves the equation min{−∆∞u, γ1(|∇u|) − Λ∞} = 0 in the viscosity sense. We conclude that Λ∞ = γ1(ε) and u∞ = ε −1d. In the second part of this work, exposed in Chapter 4, we study the asymptotic behavior of the minimizers of the Rayleigh-type quotient k∇vkΦl kvkΨj , where (Φl) and (Ψj ) are sequences of N-functions. We prove that, up to subsequences, the minimizer of k∇·kΦl k·kΨj converges, as j → ∞, to the minimizer of the quotient k∇·kΦl k·k∞ . On its turn, this quotient converges, as l → ∞, to the minimizer w∞ of the Rayleigh-type quotient k∇·k∞ k·k∞ . We show that w∞ is the viscosity solution of    ∆∞ u k∇uk∞ = 0 em D := Ω \ {x?}, u kuk∞ = d sobre ∂D = Ω ∪ {x?}, where x? ∈ Ω satisfies w∞(x?) = kw∞k∞ = 1 and d(x?) = kdk∞.

Assunto

Matemática – Teses., Expansões assintótica – Teses., Equações diferenciais parciais – Teses., Operador laplaciano – Teses., Perturbação (Matematica) – Teses., Soluções de viscosidade – Teses.

Palavras-chave

Comportamento assintótico, N-função, Φ-Laplaciano, problema singular, solução de viscosidade

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por