Valores fracos, variáveis modulares e o espaço de fase quântico

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Reinaldo Oliveira Vianna
Felipe Fernandes
José Ferraz de Moura Nunes Filho

Resumo

Este trabalho tem como objetivo principal investigar os conceitos de Valor Fraco e Variáveis Modulares na mecânica quântica. Para compreender melhor o conceito de valor fraco, introduzimos o formalismo de dois estados da mecânica quântica e o modelo ideal de medida de von Neumann, dos quais é derivado o valor fraco. Apresentamos resultados previamente obtidos, onde aplicamos o método de estados coerentes para descrever o espaço de fase, com o intuito de analisar melhor os efeitos no sistema medidor quando há uma interação entre o mesmo e o sistema a ser medido. Apresentamos também uma análise crítica das idéias introduzidas por Tamate na investigação do valor fraco, onde são levados em conta aspectos geométricos do espaço de estados quânticos. Com respeito as váriaveis modulares, que foram introduzidas por Aharonov, Pendleton e Petersen, em 1969, com o intuito de descrever aspectos não-locais que surgem em alguns fenômenos quânticos, como por exemplo o efeito Aharonov-Bohm, propomos uma maneira natural de definí-las. Para tal, utilizamos a descrição dos espaços de estados quânticos de dimensão finita feita por Schwinger, bem como seu limite para o contínuo, e o resultado obtido por Lobo e Nemes, que diz que um sistema físico quântico representado pelo produto tensorial de dois espaços de estados quânticos de dimensões finitas e primas entre si, não pode ser considerado como um sistema que possui dois graus de liberdade, mas sim, efetivamente, somente um grau de liberdade.

Abstract

This work intends to investigate the concepts of weak value and modular variables in quantum mechanics. To better understand the concept of weak value, we introduce the two state formalism of quantum mechanics and the von Neumann model for an ideal measurement, both of which derive the weak value. We present previous results in which we applied the coherent state method to describe the phase space in order to better analyze the effects in the measurement system when there is an interaction between it and the system being measured. We also present a critical analysis of the ideas introduced by Tamate in the investigation of the weak value, in which the geometrical aspects of the quantum state space were considered. We also propose a natural way to define the modular variables, that were introduced by Aharonov, Pendleton and Peterson in 1969, to describe non-local aspects that arise in some quantum phenomena, such as the Aharonov-Bohm effect. To do so,we use the description of the quantum state space of finite dimension constructed by Schwinger, as well as its limit to the continuous, and the results obtained by Lobo e Nemes, that says that a quantum physical system represented by a tensor product between two quantum spaces of states of finite and coprime dimensions, can not be considered as asystem composed by two degrees of freedom, but in fact, only one degree of freedom

Assunto

Mecânica quântica, Geometria de valores fracos, Variáveis modulares, Física

Palavras-chave

Mecânica quântica, Geometria de valores fracos, Variáveis modulares, Valor fraco

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por