Sobre a conjectura de Gallai: problemas associados à decomposição e cobertura de grafos

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Este trabalho está baseado no estudo da conjectura de Gallai (1966), que nos diz que qualquer grafo conexo com n vértices pode ser decomposto em no máximo bn+1 2 c caminhos aresta-disjuntos. Apresenta-se um dos primeiros resultados obtidos por Lovász (1968),que afirma que se um grafo tem no máximo um vértice de grau par, então a conjectura é verdadeira. Brevemente, estuda-se as decomposições por árvores e grafos completos. Estudamos os trabalhos de Donald(1980) e Pyber(1996) que estenderam a técnica de Lovász. Finalmente,estudamos o resultado de Fan(2005)que afirma que se um sub grafo induzido por vértices de grau par de um grafo G é um grafo com certa propriedade, então a conjectura é verdadeira para G.

Abstract

This work is based on the study of Gallai’s conjecture (1966), which tells us that any connected graph with n vertices can be decomposed into at most bn+1 2 c edge-disjoint paths. One of the first results by Lovász (1968) is presented. It asserts that if a graph has at most one vertex of even degree, then the conjecture is true. Decompositions by trees and complete graphs are studied. We also study works of Donald(1980) and Pyber(1996) which extend Lovász’s technique. Finally we study the result of Fan (2005) which states that if subgraph induced by even-degree vertices of a graph G is a graph with a certain property, then the conjecture is true for G.

Assunto

Matemática - Teses, Conjectura de Gallai, Método de decomposição

Palavras-chave

Conjectura de Gallai, Decomposição, Cobertura

Citação

Departamento

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por