Gabriel graph transductive approach to dataset shift

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de evento

Título alternativo

Primeiro orientador

Membros da banca

Resumo

It is not uncommon for data obtained from systems to change after the model is learned. These occurrences are named dataset shifts and to deal with them models with the ability to adapt to data changes must be used. A strategy that can be easily integrated to other classifiers is proposed. It creates a geometrical representation of data that extracts information from both labelled and unlabelled data. Then data entropy and Jensen-Shannon dissimilarity tests are used during the model selection to handle cases where data shift. Results have shown that the proposed method is promising because of its simple integration with state of art classifiers and its performance in enhancing said classifiers accuracy in the studied cases.

Abstract

Assunto

Modelos matemáticos

Palavras-chave

Data models , Entropy , Gaussian mixture model , Labeling , Adaptation models , Mathematical model, Dataset Shift , Transduction Approach , Gabriel Graph , Unlabeled Data , Training Data , Random Variables , Support Vector Machine , Covariance Matrix , Probability Density Function , Mixture Model , Data Clustering , Radial Basis Function , Spatial Clustering , Gaussian Mixture Model , Binary Classification Problem , Labeling Process , Cluster Labels , Delaunay Triangulation , State Of The Art Methods , Jensen-Shannon Divergence , Cluster Boundaries , Cluster Aggregation , Improvement In Classification , Multilayer Perception

Citação

Curso

Endereço externo

https://ieeexplore.ieee.org/abstract/document/8820327

Avaliação

Revisão

Suplementado Por

Referenciado Por