Non-minimal order low-frequency H-infinity filtering for uncertain discrete-time systems

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de evento

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This paper proposes a sufficient condition for the discrete-time robust H∞ filtering design problem with low-frequency specifications using an extension of the generalized Kalman-Yakubovich-Popov lemma. The matrices of the system are supposed to be uncertain, time-invariant and to belong to a polytopic domain. The proposed approach takes advantage of a non-minimal filter structure, that is, a filter with order greater than the order of the system being filtered, to provide improved H∞ bounds for low-frequency specifications. The condition can be solved by means of linear matrix inequality relaxations with slack variables and Lyapunov matrices which are considered as homogeneous polynomials of arbitrary degree. Numerical examples illustrate the improvements on the H∞ bounds provided by the non-minimal filter structure in combination with the more accurate polynomial approximations (higher degrees) for the optimization variables.

Abstract

Assunto

Sistemas lineares, Liapunov, Funções de

Palavras-chave

Linear matrix inequalities, Filtering, Generalized Kalman-Yakubovich-Popov Lemma, Low-frequency specifications, Linear time-invariant systems

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S2405896317315306

Avaliação

Revisão

Suplementado Por

Referenciado Por