Holomorphic foliations of degree four on the complex projective space

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Membros da banca

Arnulfo Miguel Rodriguez Peña
Gilcione Nonato Costa
José Omegar Calvo Andrade
Maurício Barros Corrêa Júnior

Resumo

In this work, we study holomorphic foliations of degree four on complex projective space $\p^n$, where $n\geq 3$, with a special focus on obtaining a structural theorem for these foliations. Furthermore, for a foliation $\f$ of degree $d\geq 4$ with a sufficiently high $k^{th}$-jet, we prove that either $\f$ is transversely affine outside a compact hypersurface, or $\f$ is transversely projective outside a compact hypersurface, or $\f$ is the pull-back of a foliation on $\p^2$ by a rational map.

Abstract

Neste trabalho, estudaremos folheações holomorfas de grau quatro no espaço projetivo complexo $\mathbb{P}^n$, com $n \geq 3$, com especial foco em obter um teorema estrutural para essas folheações. Mais ainda, para uma folheação $\mathcal{F}$ de grau $d \geq 4$ com $k^{\circ}$-jato suficientente alto, provamos que $\mathcal{F}$ é transversalmente afim fora de uma hipersuperfície compacta, ou $\mathcal{F}$ é transversalmente projetiva fora de uma hipersuperfície compacta, ou $\mathcal{F}$ é o Pull-back de uma folheação em $\mathbb{P}^2$ por um mapa racional.

Assunto

Matemática – Teses, Folheações (Matemática) – Teses, Seqüências (Matemática) – Teses

Palavras-chave

Holomorphic Foliation, Rational First Integral, Affine Transverse Structure, Pure Projective Transverse Structure, Pull-back Of Foliations, Godbillon-Vey Sequences

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto